
ELECTRONIC MODULAR

FLAKERS AND SUPERFLAKERS

New PC board version

SERVICE MANUAL

I NOSTRI IMPIANTI SONO CONFORMI ALLA DIRETTIVA 73/23 CEE - 89/336

Cod. 71503496/0- Rev. 002 - 05/2015

FLAKERS

LED F80C	LED F125C F120÷SFN1000	STATUS	REASON WHY - SIGNIFICATION - SIGNIFICATO
•••••		ON STEADY FIXE FISSO	UNTIL UNDER POWER SOUS TENSION IN TENSIONE
		ON STEADY FIXE FISSO	UNIT OFF AT BIN FULL CABINE PLEINE CONTENITORE PIENO
		BLINKING SLOW CLIGNOTANT LENT LAMPEGGIANTE LENTO	I/R BEAM CUTTED FAISCEAU INFRA ROUGE CELLULE NIVEAU GLACE INTERROMPU RAGGIO INFRAROSSO INTERROTTO
		BLINKING FAST CLIGNOTANT RAPIDE LAMPEGGIANTE VELOCE	I/R ON AFTER TRIP OFF AT BIN FULL FAISCEAU INFRA ROUGE CELLULE NIVEAU GLACE ETABLI RAGGIO INFRAROSSO RIPRISTINATO DOPO FERMATA A CONT. PIENO
•••••		ON STEADY FIXE FISSO	NO WATER MANQUE D'EAU <i>ASSENZA D'ACQUA</i>
		ON STEADY FIXE FISSO	TOO HI DISCHARGE PRESSURE/TEMP OR TO LOW TOOM TEMP (<+3°C) COUPURE HP OU TRES BASSE TEMP. AMBIANTE (<+3°C) FERMATA ALTA TEMP. CONDENSAZIONE O TEMP. AMBIENTE BASSA (<+3°C)
		BLINKING CLIGNOTANT <i>LAMPEGGIANTE</i>	DELAY AT START UP (3') TEMPORISATION AU DEMARRAGE (3') <i>RITARDO PARTENZA (3')</i>
		ON STEADY FIXE FISSO	NO, SLOW OR WRONG ROTATION OF DRIVE MOTOR MOTOREDUCTEUR TOURNE A L'ENVERS, NE TOURNE PAS, OU TOP LENTAMENT MOTORE RIDUTTORE GIRA AL CONTRARIO, NON GIRA O GIRA LENTAMENTE
	000	BLINKING CLIGNOTANT <i>LAMPEGGIANTE</i>	TOO HI EVAP. TEMP (>0°C) AFTER 10' FROM START UP COUPURE BP (>0°C) PA LA SONDE EVAP. NON ATTEINTE APRES 10' DE FONCIONNEMENT TEMP. EVAP. >0°C DOPO 10' DA INIZIO FUNZIONAMENTO
		ON STEADY FIXE FISSO	CONDENSER SENSOR OUT OF ORDER SONDE CONDENSEUR HS SONDA CONDENSATORE MALFUNZIONANTE
		BLINKING CLIGNOTANT <i>LAMPEGGIANTE</i>	EVAPORATOR SENSOR OUT OF ORDER SONDE EVAPORATEUR HS SONDA EVAPORATORE MALFUNZIONANTE
		BLINKING CLIGNOTANT <i>LAMPEGGIANTE</i>	6 OR 12 MONTHS WATER SYSTEM CLEANING REMIND (according to the Jumper setting) RAPPEL NETTOYAGE SYSTÉME HYDRAULIQUE APRÉS 6 OU 2 MOIS (selon reglage chavalier) <i>RICHIAMO PULIZIA CIRCUITO IDRICO DOPO 6 O 12 MESI (in funzione regolazione ponticello)</i>
		BLINKING IN SEQUENCE CLIGNOTANT EN SEQUENCE LAMPEGGIANTE IN SEQUENZA	PURGE CUCLE IN OPERATION (only on units equipped with purge valve) CYCLE D'ÉVACUATION EAU EN FONCTION (seulement dans les machine equipées avec vanne de vidange eau) SISTEMA DI SCARICO ACQUA IN FUZIONE (solo negli apparecchi dotati di valvola di scarico)
		BLINKING CLIGNOTANT <i>LAMPEGGIANTE</i>	UNIT OFF DUE TO THE JUMPER ON TEST CONTACTS MACHINE A L'ÂRRET - CONTACTS TEST FERMÉES MACCHINA FERMA - CONTATTI TEST CHIUSI

PUSH AND HOLD THE RED LIGHTED SWITH OR THE PC BOARD BUTTON FOR MORE OF 5 SECONDS WITH MACHINE IN OPERATION TILL THE SWITCHING OFF OF THE TWO YELLOW LEDS TO RESTART THE CLEANING REMIND COUNTDOWN

APPUYER SUR LE BOUTON ROUGE OU SUR LE BOUTON DE LA CARTE POUR 5 SECONDES AVEC LA MACHINE EN FONCTIONNEMENT JUSQU'A L'ETEINTE DE LES DEUX LEDS JAUNE POUR REINITIALISER L'ALARME JUSQU'AU PROCHAIN DE TARTRAGE PREMERE IL PULSANTE ROSSO O IL PULSANTE DELLA SCHEDA PER PIÙ DI 5" CON LA MACCHINA IN FUNZIONE FINO ALLO SPEGNIMENTO DEI DUE LED

GIALLI PER FAR RIPARTIRE IL CONTEGGIO PER LA PROSSIMA DISINCROSTAZIONE.

Drücken und halten sie den roten Schalter oder den push buton auf der Elektronik für mehr als 5 Sekunden wenn die Maschine in Betrieb ist, bis die 2 gelben LED's auf der Elektronik nicht mehr leuchten! Der Erinnerungszyklus für die Reinigung ist somit zurückgesetwt und startet neu!

TABLE OF CONTENTS

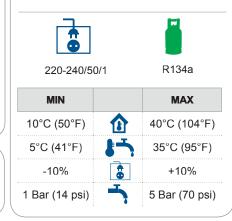
Specification F 80C Specification F 125C Specification F 120 Specification F 200 Specification SF 300 Specification SF 500 Specification SFN 1000	pagina	2 3 4 5 6 7 8
GENERAL INFORMATION AND INSTALLATION		
Introduction Unpacking and Inspection - Ice maker Unpacking and Inspection - Storage bin Location and levelling Electrical connections Water supply and drain connection Final ceck list Installation pratice		9 9 10 10 11 12 13 13
OPERATING INSTRUCTIONS		
Start up Operations checks		14 16
PRINCIPLE OF OPERATION (how it works)		
Water circuit Refrigerant circuit Mechanical system Operating pressures Components description		19 20 22 23 24
ADJUSTMENT, REMOVAL AND REPLACEMENT PROCEDURES		
Adjustment of the evaporator water level Replace of the gear motor magnetic sensor Replace of auger, water seal, bearing and coupling Replacement of the gear motor assy Replacement of freezing cylinder Wiring diagram Service diagnosis		29 29 30 31 31 35 42
MAINTENANCE AND CLEANING INSTRUCTIONS		
General Icemakers Cleaning instructions of water system		44 44 45

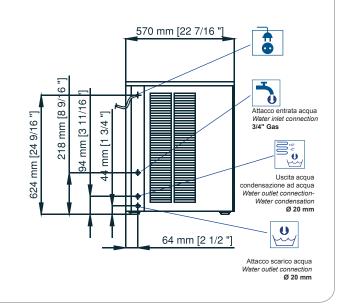
Icematic Cooling Innovation

Fabbricatori di ghiaccio Granulari : F80C - F125C - F120 - F200 - SF300 - SF500 - SFN1000 Ice Flaker Machines : F80C - F125C - F120 - F200 - SF300 - SF500 - SFN1000

90kg - 198lbs




CAPACITA' DEPOSITO - BIN CAPACITY


20 kg - 44 lbs

DIMENSIONI - DIMENSIONS

WxDxH(in):22 7/16" x 23 10/16" x 27 6/16"

cem

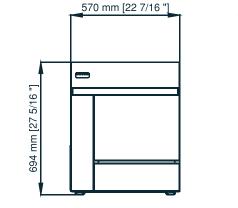
(24 h)

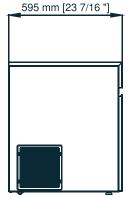
PRODUZIONE DI GHIACCIO - ICE PRODUCTION kg/24h - lbs/24h Percentuale acqua residua nel ghiaccio dal 18 al 20% Ice contains 18-20% residual water

Raffreddamento ad aria Air Cooled Unit

Temp. aria Air Temp.	🔶 Te	emp. acqua	Water Tem	ıp.
°C	32°	21°	15°	10°
°F	90°	70°	60°	50°
10°	78	84	87	90
50°	172	185	192	198
21°	72	78	81	84
70°	159	172	179	185
32°	58	63	66	68
90°	128	139	145	150
38°	48	52	54	56
100°	106	115	119	123

Raffreddamento ad acqua - Water Cooled Unit


Temp. aria Air Temp.		Temp. acqua /	Water Tem	ıp.
°C	32°	21°	15°	10°
°F	90°	70°	60°	50°
10°	76	81	84	86
50°	168	178	185	190
21°	72	77	80	82
70°	159	170	176	181
32°	68	74	76	78
90°	150	163	168	172
38°	64	70	71	72
100°	141	154	156	159


MARCHI - MARKS

CONSUMI - ENERGY

TECNOLOGIE-TECHNOLOGIES

cemakers - F80C - Icematic - 001.indd

Via del Lavoro,9 - C.P. 172 I - 31033 Castelfranco Veneto (TV) ITALY EU Tel. +39 0423 738452 Fax +39 0423 722811

Fabbricatori di ghiaccio Granulari : F80C - F125C - F120 - F200 - SF300 - SF500 - SFN1000 Ice Flaker Machines : F80C - F125C - F120 - F200 - SF300 - SF500 - SFN1000

DATI TECNICI - SPECIFICATIONS $+C^{\circ}$ * W - C 4 COND l/h COMP. W ABS. W FUSE Kwh/100Kg kg Lbs kg Lbs F125C A <u>_</u> 1228 490 10 10.4 4,6 64 141 74 163 F125C W 430 10 8.0 163 1228 72.4 64 141 74

CONSUMI - ENERGY

PRODUZIONE DI GHIACCIO - ICE PRODUCTION kg/24h - lbs/24h Percentuale acqua residua nel ghiaccio dal 18 al 20% Ice contains 18-20% residual water

Raffre	ddament	o ad aria	Air Coolec	d Unit	
Temp. aria Air Temp.	Femp. acqua / Water Temp.				
°C	32°	21°	15°	10°	
°F	90°	70°	60°	50°	
10°	102	111	115	120	
50°	224	245	253	264	
21°	95	104	108	110	
70°	209	229	238	242	
32°	84	90	94	97	
90°	185	198	207	214	
38°	75	81	85	87	
100°	165	179	187	192	

MARCHI - MARKS

CE

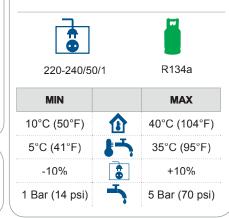
Raffreddamento ad acqua - Water Cooled Unit

Temp. aria Air Temp.	♦≈	Temp. acqua	/ Water Tem	ıp.
°C	32°	21°	15°	10°
°F	90°	70°	60°	50°
10°	97	108	117	120
50°	214	238	258	264
21°	95	105	115	117
70°	209	231	253	258
32°	90	100	107	110
90°	198	220	236	242
38°	87	97	102	105
100°	192	214	225	231

†

F125C

120kg - 264lbs

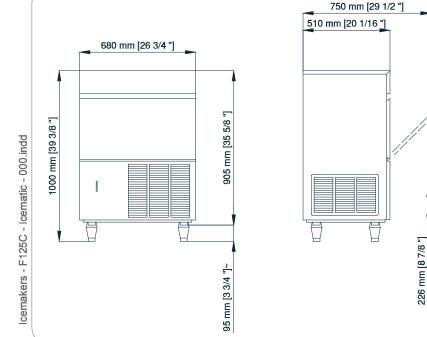

CAPACITA' DEPOSITO - BIN CAPACITY

27 kg - 60 lbs

DIMENSIONI - DIMENSIONS

LxPxH(mm): 680 x 510 x 1000

WxDxH(in):26 12/16" x 20 1/16" x 39 6/16"



680 mm [26 3/4 "]

86 mm [3 3/8 "]

Back Inlet/outlet

Ingressi/Uscite Posteriori

Via del Lavoro.9 - C.P. 172 I - 31033 Castelfranco Veneto (TV) ITALY EU

Tel +39 0423 738452 Fax +39 0423 722811

83 mm [7 3/16 "] 38 mm [5 7/16 "]

[1 3/4 "

90 mm [3 9/16 '

45 mm [

icematic@castelmac.it www.castelmac.it

Icematic

Attacco entrata acqua

Attacco entrata acqua potabile Water potable inlet

condensazione Water condenser inlet connection 3/4" Gas

connection 3/4" Gas

Attacco scarico

acqua Water outlet connection Ø 20 mm

Uscita acqua condensazione ad

acqua Water outlet connection-Water condensation Ø 20 mm

9

()

0

Fabbricatori di ghiaccio Granulari : F80C - F125C - F120 - F200 - SF300 - SF500 - SFN1000 Ice Flaker Machines : F80C - F125C - F120 - F200 - SF300 - SF500 - SFN1000

DATI TECNICI - SPECIFICATIONS + C⁴ л * W - C 4 COND. COMP. W ABS. W FUSE l/h Kwh/100Kg kg Lbs kg Lbs F120 A <u>_</u> 1200 500 10 11,6 4 45 99 52 115 F120 W 1200 500 10 29 115 11.3 45 99 52

PRODUZIONE DI GHIACCIO - ICE PRODUCTION kg/24h - lbs/24h Percentuale acqua residua nel ghiaccio dal 18 al 20%

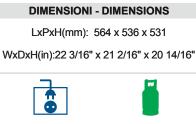
Ice contains 18-20% residual water

Т

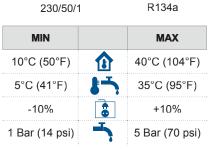
Raffre	ddament	o ad aria	Air Coolec	l Unit	
Temp. aria Air Temp.	Temp. acqua / Water Temp.				
°C	32°	21°	15°	10°	
۴	90°	70°	60°	50°	
10°	104	112	116	120	
50°	229	247	256	264	
21°	98	106	110	114	
70°	216	234	242	251	
32°	87	95	99	103	
90°	192	209	218	227	
38°	80	88	92	96	
100°	176	194	203	212	

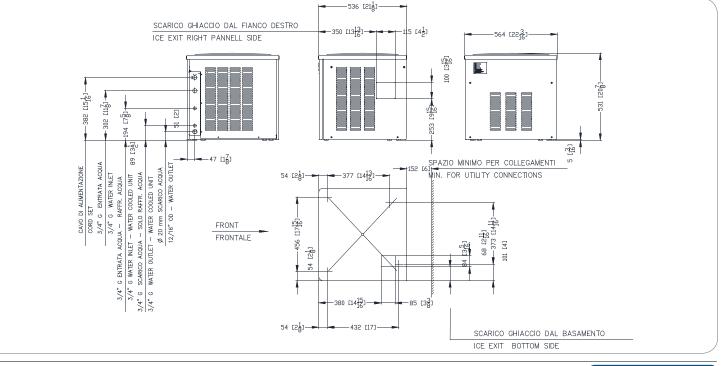
Raffreddamento ad acqua - Water Cooled Unit


•≈ 1	Temp. acqua /	Water Tem	ıp.
32°	21°	15°	10°
90°	70°	60°	50°
104	112	116	120
229	247	256	264
94	102	106	110
207	225	234	242
89	97	101	105
196	214	223	231
87	95	99	103
192	209	218	227
	32° 90° 104 229 94 207 89 196 87	32° 21° 90° 70° 104 112 229 247 94 102 207 225 89 97 196 214 87 95	32° 21° 15° 90° 70° 60° 104 112 116 229 247 256 94 102 106 207 225 234 89 97 101 196 214 223 87 95 99



CONSUMI - ENERGY


TECNOLOGIE-TECHNOLOGIES

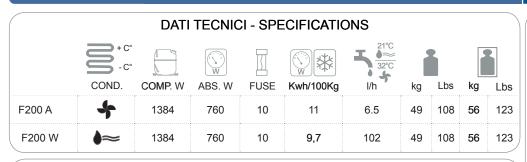


DEPOSITO - SLOPE BIN D101 - D155

Icematic

Via del Lavoro.9 - C.P. 172 I - 31033 Castelfranco Veneto (TV) ITALY EU

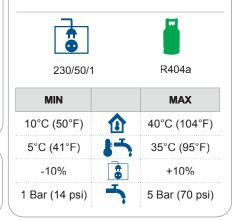
Tel +39 0423 738452 Fax +39 0423 722811


icematic@castelmac.it www.castelmac.it

F200

Fabbricatori di ghiaccio Granulari : F80C - F125C - F120 - F200 - SF300 - SF500 - SFN1000 Ice Flaker Machines : F80C - F125C - F120 - F200 - SF300 - SF500 - SFN1000

200kg - 441lbs


DEPOSITO - SLOPE BIN

D105 - D155

DIMENSIONI - DIMENSIONS

LxPxH(mm): 564 x 536 x 531

WxDxH(in):22 3/16" x 21 2/16" x 20 14/16"

PRODUZIONE DI GHIACCIO - ICE PRODUCTION kg/24h - lbs/24h Percentuale acqua residua nel ghiaccio dal 18 al 20% Ice contains 18-20% residual water Raffreddamento ad aria Air Cooled Unit Raffreddamento ad acqua - Water Cooled Unit

Temp. aria Air Temp.	Temp. acqua / Water Temp.				
°C	32°	21°	15°	10°	
۴F	90°	70°	60°	50°	
10°	172	186	193	200	
50°	379	410	426	441	
21°	164	178	185	192	
70°	362	392	408	423	
32°	141	155	162	169	
90°	311	342	357	373	
38°	125	139	146	153	
100°	276	306	322	337	

Temp. aria Air Temp.		Temp. acqua	/ Water Tem	ıp.
°C	32°	21°	15°	10°
°F	90°	70°	60°	50°
10°	172	186	193	200
50°	379	410	426	441
21°	169	183	190	197
70°	373	403	419	434
32°	161	175	182	189
90°	355	386	401	417
38°	155	169	176	183
100°	342	373	388	403

MARCHI - MARKS (F

TECNOLOGIE-TECHNOLOGIES

536 [21]] SCARICO GHIACCIO DAL FIANCO DESTRO 350 [1313] 15 [4] 564 [22<u>3</u>]-ICE EXIT RIGHT PANNELL SIDE <u>[2</u>]2 E. 100 E20 ¢ -382 [15₁₆] -[811] 331 253 [9]5 Ω 302 5 194 đ -Fu -69 47 [17] 152 ISPAZIO MINIMO PER COLLEGAMENTI 152 IGI 68 IC 12/16" OD - WATER OUTLET CAVO DI ALIMENTAZIONE CORD SET WATER OUTLET - WATER COOLED UNIT Ø 20 mm SCARICO ACQUA -377 [14]3 54 [2] 3/4" G WATER INLET - WATER COOLED UNIT SCARICO ACQUA - SOLO RAFFR. ACQUA -1212 [14拱] FRONT 3/4" G ENTRATA ACQUA -FRONTALE [1] 373 456 [4] de Sec -[8] 68 101 54 3/4" G 3/4" G 380 [1415] -85 [38] 54 [2<mark>8</mark>]-432 [17]-SCARICO GHIACCIO DAL BASAMENTO ICE EXIT BOTTOM SIDE

Castel MAC SpA

Via del Lavoro.9 - C.P. 172 I - 31033 Castelfranco Veneto (TV) ITALY EU

Tel +39 0423 738452 Fax +39 0423 722811

icematic@castelmac.it www.castelmac.it

Fabbricatori di ghiaccio Granulari : F80C - F125C - F120 - F200 - SF300 - SF500 - SFN1000 Ice Flaker Machines : F80C - F125C - F120 - F200 - SF300 - SF500 - SFN1000

DATI TECNICI - SPECIFICATIONS) + C * W 32°C - C ۵ 4 COND l/h COMP. W ABS, W FUSE Kwh/100Kg kg Lbs kg Lbs SF300 A <u>_</u> 2650 1200 16 10,8 11 78 172 87 192 SF300 W 1200 9 192 2650 16 115 78 172 87

CONSUMI - ENERGY

ENERGY

PRODUZIONE DI GHIACCIO - ICE PRODUCTION kg/24h - lbs/24h Percentuale acqua residua nel ghiaccio dal 18 al 20% Ice contains 18-20% residual water

Raffreddamento ad aria Air Cooled Unit Temp. aria 4 Temp. acqua / Water Temp. Air Temp. °C 32° 21° 15° 10° °F 90° 70° 60° 50° 10° 260 290 305 320 50° 573 639 672 705 21° 255 285 300 315 70° 562 628 661 694 32° 210 240 255 270 90 463 529 562 595 38 190 220 235 250 485 518 551 100° 419

MARCHI - MARKS

Raffreddamento ad acqua - Water Cooled Unit

Temp. aria Air Temp.	♦ ≈ '	Temp. acqua	/ Water Tem	ıp.
°C	32°	21°	15°	10°
۴F	90°	70°	60°	50°
10°	270	300	315	330
50°	595	661	694	728
21°	265	295	310	325
70°	584	650	683	716
32°	260	290	305	320
90°	573	639	672	705
38°	250	280	295	310
100°	551	617	650	683

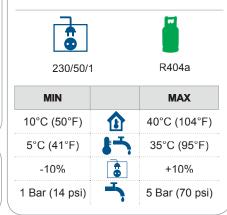
LE ENER

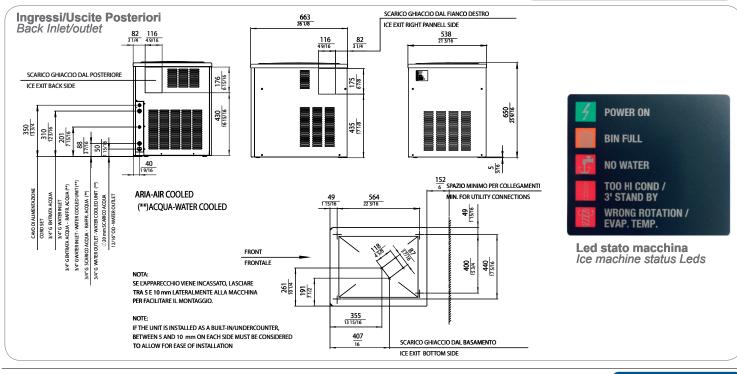
8

TECNOLOGIE-TECHNOLOGIES

agion

SF300


330kg - 727lbs


DEPOSITO - SLOPE BIN D105 - D155 - D205 - D255 - D305 - D405 DR140 - DR320

DIMENSIONI - DIMENSIONS

LxPxH(mm): 538 x 663 x 650

WxDxH(in):21 3/16" x 26 2/16" x 25 10/16"

cemakers - SF300 - Icematic - 000.indd

Via del Lavoro 9 - C P 172 I - 31033 Castelfranco Veneto (TV) ITALY EU

Tel +39 0423 738452 Fax +39 0423 722811

icematic@castelmac.it www.castelmac.it

Icematic

Fabbricatori di ghiaccio Granulari : F80C - F125C - F120 - F200 - SF300 - SF500 - SFN1000 Ice Flaker Machines : F80C - F125C - F120 - F200 - SF300 - SF500 - SFN1000

DATI TECNICI - SPECIFICATIONS) + C * W - C ۵ 4 COND l/h COMP. W ABS. W FUSE Kwh/100Kg kg Lbs kg Lbs SF500 A <u>_</u> 5030 2000 16 10,2 18 95 207 104 227 SF500 W 5030 2000 185 16 8.7 95 207 104 227

PRODUZIONE DI GHIACCIO - ICE PRODUCTION kg/24h - lbs/24h Percentuale acqua residua nel ghiaccio dal 18 al 20% Ice contains 18-20% residual water

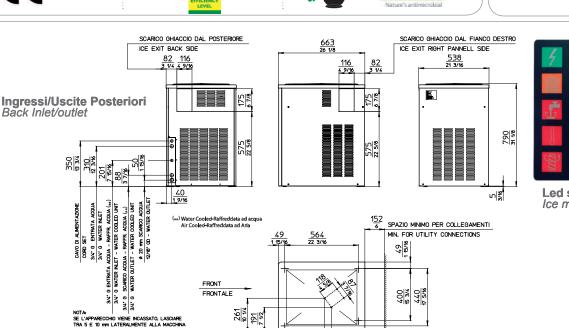
CONSUMI - ENERGY

ENERGY

Raffreddamento ad aria Air Cooled Unit Temp. aria 4 Temp. acqua / Water Temp. Air Temp. °C 32° 21° 15° 10° °F 90° 70° 60° 50° 10° 440 520 560 600 50° 970 1146 1234 1323 21° 420 500 540 580 70° 926 1102 1190 1278 32° 380 440 470 500 90 838 970 1036 1102 38° 330 370 390 410 816 860 100° 727 904

MARCHI - MARKS

(E


Raffreddamento ad acqua - Water Cooled Unit

Temp. aria Air Temp.		Temp. acqua	/ Water Tem	ıp.
°C	32°	21°	15°	10°
°F	90°	70°	60°	50°
10°	480	540	570	600
50°	1058	1190	1256	1323
21°	470	530	560	590
70°	1036	1168	1234	1300
32°	460	520	550	580
90°	1014	1146	1212	1278
38°	450	513	540	570
100°	992	1131	1190	1256

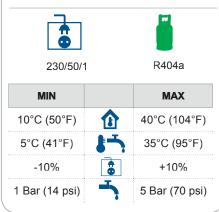
TECNOLOGIE-TECHNOLOGIES HENER OF

agion

355

407

SF500


600kg-1323lbs

DEPOSITO - SLOPE BIN D205 - D255 - D305 - D405-D505 UD500-UD700-DR140 - DR320

DIMENSIONI - DIMENSIONS

LxPxH(mm): 538 x 663 x 790

WxDxH(in):21 3/16" x 26 2/16" x 31 2/16"

Led stato macchina Ice machine status Leds

Condensatore remoto Optional Remote condenser Optional

Castel MAC SpA

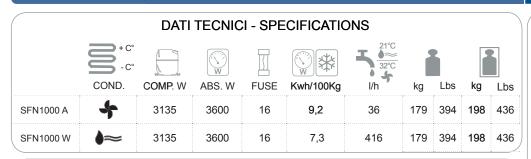
Via del Lavoro.9 - C.P. 172 I - 31033 Castelfranco Veneto (TV) ITALY EU

NOTE: IF THE UNIT IS INSTALLED AS A BUILT-IN/UNDERCOUNTER, BETWEEN 5 AND 10 mm ON EACH SDE MUST BE CONSIDER TO ALLOW FOR EASE OF INSTA

Tel +39 0423 738452 Fax +39 0423 722811

SCARICO GHIACCIO DAL BASAMENTO ICE EXIT BOTTOM SIDE

> icematic@castelmac.it www.castelmac.it


SFN1000

 Fabbricatori di ghiaccio Granulari : F80C - F125C - F120 - F200 - SF300 - SF500 - SFN1000

 Ice Flaker Machines : F80C - F125C - F120 - F200 - SF300 - SF500 - SFN1000

1220kg-2689lbs

PRODUZIONE DI GHIACCIO - ICE PRODUCTION kg/24h - lbs/24h Percentuale acqua residua nel ghiaccio dal 18 al 20%

Temp. aria

Air Temp.

°C

°F

10°

50°

21°

70°

32°

90°

38°

100

 \sim

329

90'

900

1984

900

1984

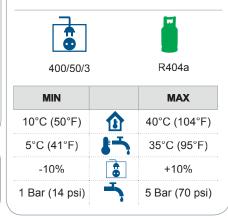
900

1984

900

1984

Ice contains 18-20% residual water



DEPOSITO - SLOPE BIN UD500-UD700-UD1000 -DR620

DIMENSIONI - DIMENSIONS

LxPxH(mm): 1065 x 698 x 850

WxDxH(in):41 15/16" x 27 8/16" x 33 7/16"

90° 1698 1918 2028 38° **720 820 870** 100° 1588 1808 1918 MARCHI - MARKS CO

Raffreddamento ad aria Air Cooled Unit

21°

70°

1050

2315

970

2138

870

Temp. acqua / Water Temp.

15°

60°

1100

2425

1020

2249

920

10°

50°

1150

2535

1070

2359

970

2138

920

2028

24

Temp. aria

Air Temp.

°C

°F

10°

50°

21°

70°

32°

4

32°

90°

950

2094

870

1918

770

CONSUMI - ENERGY

ENERGY

Raffreddamento ad acqua - Water Cooled Unit

21°

70°

1100

2425

1100

2425

1100

2425

1100

2425

Temp. acqua / Water Temp.

15°

60°

1170

2579

1170

2579

1170

2579

1170

2579

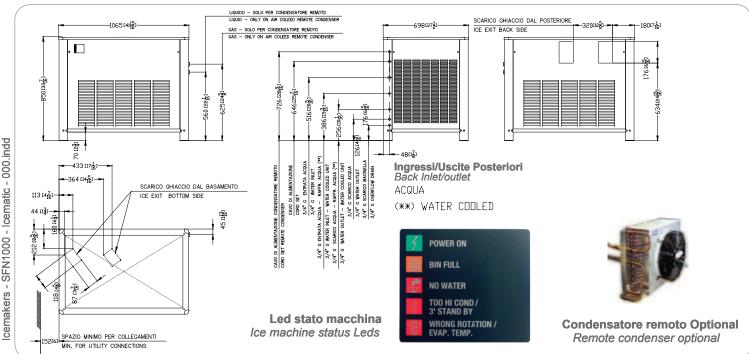
10°

50°

1220

2690

1220


2690

1220

2690

1220

2690

Castel MAC SpA

Via del Lavoro,9 - C.P. 172 I - 31033 Castelfranco Veneto (TV) ITALY EU Tel. +39 0423 738452 Fax +39 0423 722811 icematic@castelmac.it www.castelmac.it

GENERAL INFORMATION AND INSTALLATION

A INTRODUCTION

This manual provides the specifications and the step-by-step procedures for the installation, startup and operation, maintenance and cleaning for the ICEMATIC F80C-F125C-F120-F200-SF300-SF500-SFN1000.

The Electronic Flakers and Superflakers are quality designed, engineered and manufactured.

Their ice making systems are thoroughly tested providing the utmost in flexibility to fit the needs of a particular user.

NOTE. To retain the safety and performance built into this icemaker, it is important that installation and maintenance be conducted in the manner outlined in this manual.

Storage Bin

Since the SF series Modular Flakers do not have their own attached ice storage bins, it is necessary to use an auxiliary bin as detailed here below:

F80C - F125C - F100	Kg 90/130
F200	Kg 130/240
SF300	Kg 240/350
SF500 - SFN1000	Kg 500/1200

KF205-255 Stainless steel cover for D205 e D255
KF305 Stainless steel cover for D305
KF405 Stainless steel cover for D405
KF505 Stainless steel cover for D505
KM300-500 Side ice outlet kit for SF300 e SF500
KM1000 Rear ice outlet kit for SFN1000

B. UNPACKING AND INSPECTION

Icemaker

- 1 Call your authorized Distributor or Dealer for proper installation.
- 2 Visually inspect the exterior of the packing and skid. Any severe damage noted should be reported to the delivering carrier and a concealed damage claim form filled in subjet to inspection of the contents with the carrier's representative present.
- 3 a) Cut and remove the plastic strip securing the carton box to the skid.
 - b) Cut open the top of the carton and remove the polystyre protection sheet.
 - c) Pull out the polystyre posts from the corners and then remove the carton.
- 4 Remove the top and and sides panels of the unit and inspect for any concealed damage. Notify carrier of your claim for the concealed damage as stated in step 2 above.
- 5 Remove all internal support packing and masking tape.
- 6 Check that refrigerant lines do not rub against or touch other lines or surfaces, and that the fan blades move freely.
- 7 Check that the compressor fits snugly onto all its mounting pads.
- 8 See data plate on the rear side of the unit and check that local main voltage corresponds with the voltage specified on it.

CAUTION. Incorrect voltage supplied to the icemaker will void your parts replacement program.

9 Remove the manufacturer's registration card from the inside of the User Manual and fillin all parts including: Model and Serial Number taken from the data plate.

Forward the completed self-addressed registration card to CASTELMAC S.P.A.

Storage bin "D" series

- 1. Follow the steps 1, 2 and 3 above to unpack the storage bin.
- 2 Unloose the two bolts and remove the protection plate from the drain fitting on model D 550.
- 3 Carefully lay it down on its rear side and fit the four legs into their sockets.
- 4 Remove all internal support packing and masking tape as well as the plastic ice cube deflector which is not used with the ICEMA-TIC Modular Flakers.
- 5 Remove the manufacturer's registration card from the inside of the User Manual and fillin all parts including: Model and Serial Number taken from the data plate.

Forward the completed self-addressed registration card to CASTELMAC S.p.A.

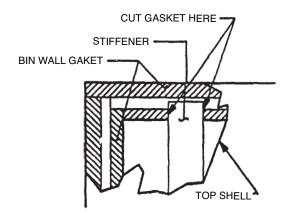
Storage bin "UD" series

- 1 Follow the steps 1, 2 and 3 above to unpack the storage bin.
- 2 Lay carefully down the bin on its back to protect the finish and remove the bolts holding the shipping skid to the bin.
- 3 Screw-in the legs into the corresponding tapped holes in the bin bottom and tighten to seat the legs well against the bin bottom.
- 4 Connect the water drain line to the male drain fitting located in the bottom of the bin.

CAUTIONS. Avoid excessive tightening force when connecting to this fitting. Do not apply excessive heat if any sweating of the fittings is necessary. Heat conduction through the metal may melt the threads in the plastic drain.

5. Insert the longer side of each plastic inspection window in the upper track of the corresponding opening and push it to force the window to enter into its seat.

KN and KF Top Covers


- 1 Follow the steps 1 and 2 above to unpack the top cover.
- 2 Cut open the carton box and pull out the KF Top Cover.
- 3 On KF 48/52 FMCD Top Covers, the ice drop area must be cutted on the plastic cover in the same position of the ice machine ice chute opening.

C. LOCATION AN LEVELLING

WARNING. This Modular Flaker and Superflaker is designed for indoor installation only. Extended periods of operation at temperature exceeding the following limitations will constitute misuse under the terms of the SCOTSMAN Manufacturer's Limited Warranty resulting in LOSS of warranty coverage.

- 1. Position the storage bin in the selected permanent location.
 - Criteria for selection of location include:
 - a) Minimum room temperature 10°C (50°F) and maximum room temperature 40°C (100°F).
 - b) Water inlet temperatures: minimum 5°C (40°F) and maximum 35°C (90°F).
 - c) Well ventilated location for air cooled models (clean the air cooled condenser at frequent intervals).
 - d) Service access: adequate space must be left for all service connections through the rear of the ice maker. A minimum clearance of 15 cm (6") must be left at the sides of the unit for routing cooling air drawn into and exhausted out of the compartment to maintain proper condensing operation of air cooled models.
- 2. Level the Storage Bin Assy in both the left to right and front to rear directions by means of the adjustable legs.
- 3. On **D** Series Storage Bin inspect its top mounting gasket which should be flat with no wrinkles, to provide a good sealing when the KF Top Cover is installed on top of it.
- 4. Place the KF Top Cover on top of Storage bin using care not to wrinkle or tear the gasket.
- 5. On the **UD Series Storage Bin** unloose the screws securing the S.S. Top Cover to the storage bin and remove it.
- 6 Lay out on the bin top the plan of the ice machine as it will be located on the bin and cut an opening in the bin top for the ice drop area; cover the edges of the opening with vinyl tape.
- 7 Install the gasket-on the bin top-around ice drop opening of the bin top; apply sealant along the inside of the gasket.

8 Position and install the four aluminium front to rear stiffeners (U shaped) paying attention to the guideline shown on the drawing.

NOTE. Bin wall gasket must be cut to clear the stiffener ends as shown on drawing. Do not put any stiffeners crossing the ice drop opening.

- 9 Install the bin top in its position onto the bin top by:
 - place the rear side of top against rear edge of the bin
 - lower the front of the top onto the stiffeners
 - re-fit the screws previously removed as per step 5
- 10Install the Modular Flaker or Superflaker onto the Top Cover of storage bin pay attention to match the ice chute with the Bin Top opening.

D. ELECTRICAL CONNECTIONS

See data plate for current requirements to determine wire size to be used for electrical connections. All icemakers require a solid earth wire. All ice machines are supplied from the factory completely pre-wired and require only electrical power connections to the wire cord provided at the rear of the unit.

Make sure that the ice machine is connected to its own circuit and individually fused (see data plate for fuse size).

The maximum allowable voltage variation should not exceed -10% and +10% of the data plate rating. Low voltage can cause faulty functioning and may be responsible for serious

damage to the overload switch and motor windings.

NOTE. All external wiring should conform to national, state and local standards and regulations.

Check voltage on the line and the ice maker's data plate before connecting the unit.

E. WATER SUPPLY AND DRAIN CONNECTIONS General

When choosing the water supply for the ice flaker F80C, F125C, F120, F200, SF300, SF500, SFN1000 consideration should be given to:

a) Length of run

- b) Water clarity and purity
- c) Adequate water supply pressure.

Since water is the most important single ingredient in producting ice you cannot emphasize too much the three items listed above.

Low water pressure, below 1 bar may cause malfunction of the ice maker unit.

Water containing excessive minerals will tend to produce scale build-up on the interior parts of the water system while too soft water (with too lo contents of mineral salts), will produce a very hard flaker ice.

WATER SUPPLY

Connect the 3/4" GAS male of the water inlet fitting, using the food grade flexible hose supplied to the cold water supply line with regular plumbing fitting and a shut-off valve installed in an accessible position between the water supply line and the unit.

If water contains a high level of impurities, it is advisable to consider the installation of an appropriate water filter or conditioner.

WATER SUPPLY - WATER COOLED MODELS

The water cooled versions of Ice Makers require two separate inlet water supplies, one for the water making the flaker ice and the other for the water cooled condenser.

Connect the 3/4" GAS male fitting of the water inlet, using the flexible hose supplied to the cold water supply line with regular plumbing fitting and a shut-off valve installed in an accessible position between the water supply line and the unit.

WATER DRAIN

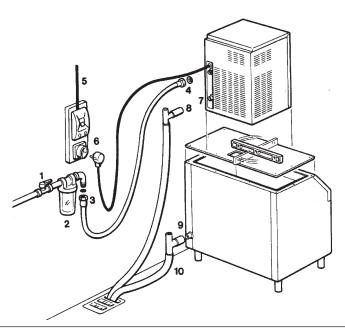
The recommended drain tube is a plastic or flexible hose with 18 mm (3/4") I.D. which runs to an open trapped and vented drain. When the drain is a long run, allow 3 cm pitch per meter (1/4" pitch per foot).

Install a vertical open vent on drain line high point at the unit drain connection to ensure good draining.

The ideal drain receptacle is a trapped and vented floor drain.

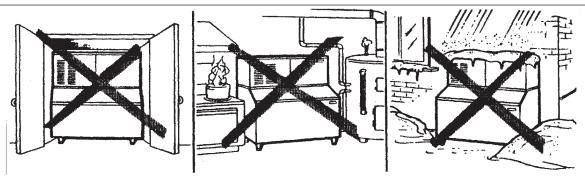
WATER DRAIN - WATER COOLED MODELS

Connect the 3/4" GAS male fitting of the condenser water drain, utilizing a second flexible hose to the open trapped and vented drain. This additional drain line must not interconnect to any other of the units drains.


NOTA. The water supply and the water drain must be installed to conform with the local code. In some case a licensed plumber and/ or a plumbing permit is required.

F. FINAL CHECK LIST

- 1 Is the unit in a room where ambient temperatures are within a minimum of 10°C (50°F) even in winter months?
- 2 Is there at least a 15 cm (6") clearance around the unit for proper air circulation?
- 3 Is the unit level? (IMPORTANT)
- 4 Have all the electrical and plumbing connections been made, and is the water supply shut-off valve open?
- 5 Has the voltage been tested and checked against the data plate rating?
- 6 Has the water supply pressure been checked to ensure a water pressure of at least 1 bar (14 psi).
- 7 Have the bolts holding the compressor down been checked to ensure that the compressor is snugly fitted onto the mounting pads?


- 8 Check all refrigerant lines and conduit lines to guard against vibrations and possible failure.
- 9 Have the bin liner and cabinet been wiped clean?
- 10Has the owner/user been given the User Manual and been instructed on the importance of periodic maintenance checks?
- 11Has the Manufacturer's registration card been filled in properly? Check for correct model and serial number against the serial plate and mail the registration card to the factory.
- 12Has the owner been given the name and the phone number of the authorized Service Agency serving him?

G. INSTALLATION PRACTICE

- 1. Hand shut-off valve
- 2. Water filter
- 3. Water supply line (flexible hose)
- 4. 3/4" GAS male fitting
- 5. Power line
- 6. Main switch
- 7. Drain fitting
- 8. Vented drain
- 9. Vented drain
- 10. Open trapped vented drain

WARNING. This icemaker is not designed for outdoor installation and will not function in ambient temperatures below 10°C (50°F) or above 40°C (100°F). This icemaker will malfunction with water temperatures below 5°C (40°F) or above 35°C (90°F).

OPERATING INSTRUCTIONS

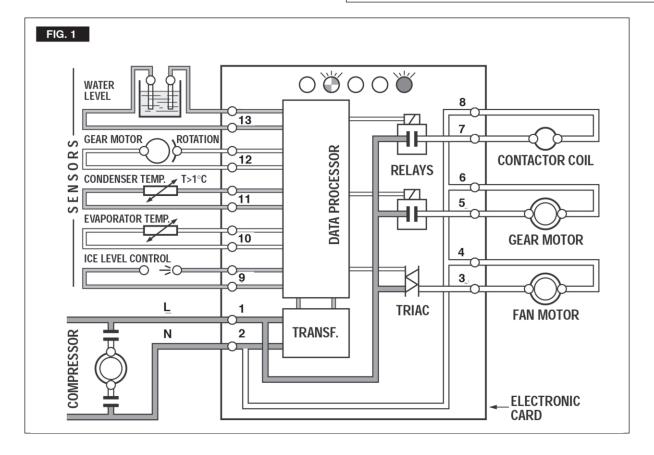
START UP

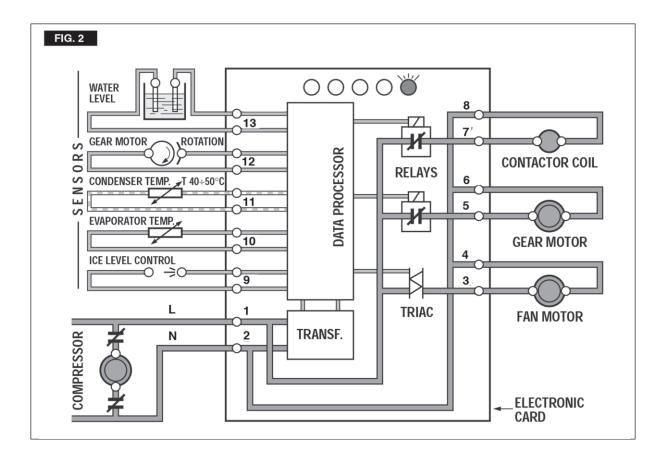
After having correctly installed the ice maker and completed the plumbing and electrical connections, perform the following "Start-up" procedure.

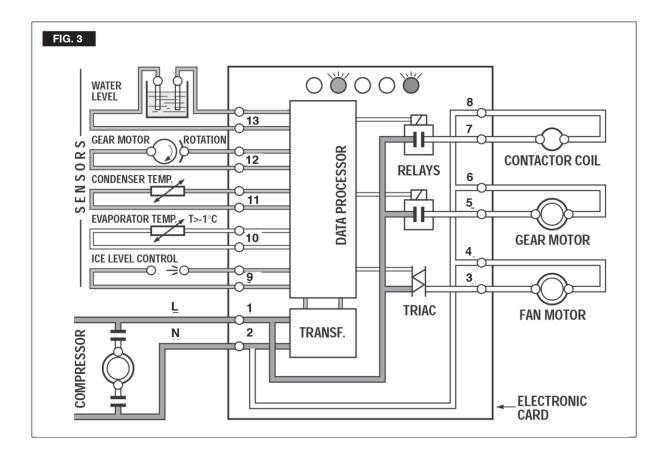
A Open the water supply line shutoff valve and put the unit under electrical power by moving the main switch, on the power supply line, to the ON position.

The first **LED - GREEN** - will glow to signal that unit is under power.

NOTA. Every time the unit is put under power, after being kept for sometime in shut-off conditions (electrically disconnected) the **RED LED** will blink for 3 minutes (60' on MF 66 only) after which the unit will start up with the immediate operation of the gear motor assembly and, after few seconds, of the compressor (Fig.1). **B** Elapsed the stand by period the unit starts operating with the activation in sequence of the following assemblies:


GEAR MOTOR/S

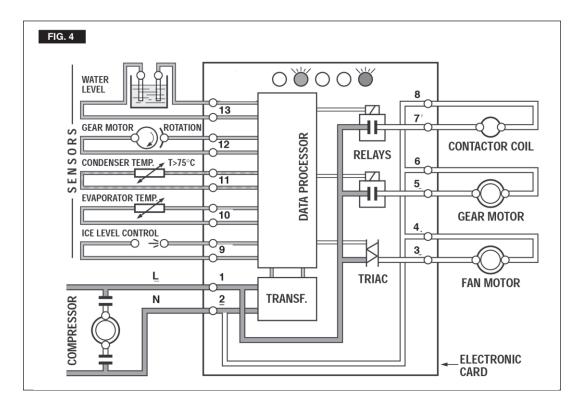

COMPRESSOR


FAN MOTOR/S (if unit is an air cooled version) kept under control by the condenser temperature sensor which has its probe within the condenser fins (Fig.2).

C After 2 or 3 minutes from the compressor start up, observe that flaker ice begins dropping off the ice spout to fall through the ice chute into the storage bin.

NOTA. The first ice bits that drop into the ice storage bin are not so hard as the evaporating temperature has not yet reached the correct operating value. It is necessary to allow the ice - just made - to cure itself and wait for about ten minutes for the evaporating temperature to reach the correct value so to make more hard bits of ice.

NOTE. f, after ten minutes from the compressor start-up, the evaporating temperature has not dropped down to a value lower than **-1°C (30°F)** the evaporating temperature sensor detects such an abnormal situation and stops consequently the unit operation (first the compressor and 3' later the gear reducer). In this circustance, the **5th warning YELLOW LED** will blink.

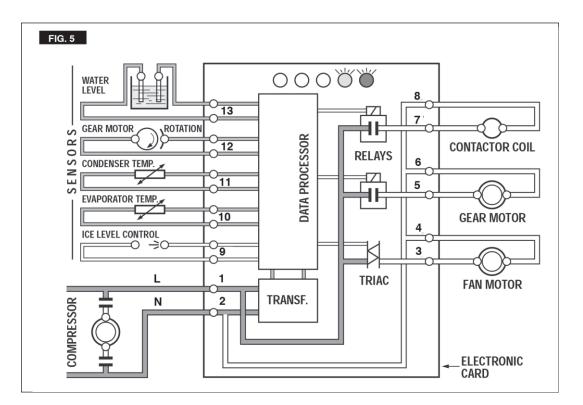

The machine will remain in OFF mode for one hour then it will restart automatically. In case the unit trips OFF again in alarm for 3 times in 3 hours, the machine SHUTS OFF DEFINITIVELY. After having diagnosed and eliminated the cause of the too hi evaporating temperature (insufficient refrigerant in the system or compressor not running) it is necessary to unplug and plug in again to restart the machine. The unit, before resuming the normal operation, will go through the **usual 3 minutes STAND-BY period.**

OPERATION CHECKS UPON THE UNIT START UP

D Remove front service panel and, if necessary, install the refrigerant service gauges on the corresponding service valves to check both the HI and LO refrigerant pressures. **NOTE.** On air cooled models, the condenser temperature sensor, which is located within the condenser fins, keeps the head (condensing) pressure between preset values. In the event of condenser clogged - such to prevent the proper flow of the cooling air - or, in case the fan motor is out of operation, the condenser temperature rises and when it reaches **70° C** (**160°F**) for air cooled version - and **60° C** (**140°F**) - for water cooled version - the condenser temperature sensor shuts-off the ice maker (first the compressor and 3' later the gear reducer) with the consequent light-up of the **RED WARNING LIGHT** (Fig.3).

The machine will remain in OFF mode for one hour then it will restart automatically. In case the unit trips OFF again in alarm for 3 times in 3 hours, the machine SHUTS OFF DEFINITIVELY. After having diagnosed the reason of the temperature rise and removed its cause, it is necessary to proceed as per the previous "NOTE" to start up again the operation of the ice maker.

E Check for the correct CUT-OUT and CUT-IN of the **water level sensor** by first shutting closed the water shutoff valve on the water supply line. This will cause a gradual decrease of the water level in the float reservoir and as soon as the level gets below the two vertical metal pins, the flaker stops to operate (compressor first and 3' later the gear reducer) and the **YELLOW warning LED** will glow to signal the shortage of water (Fig. 4)


NOTE. The water level sensor detects the presence of water in the float reservoir and confirms it to the micro processor by maintaining a low voltage current flow between the two metal pins using the water as conductor.

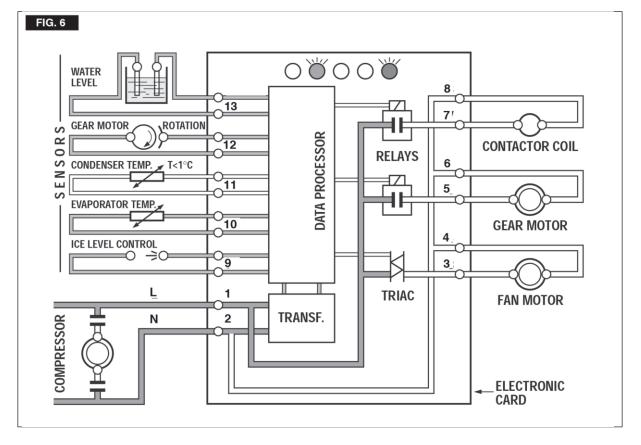
WARNING. The use of de-mineralized water (water with no salt content) having an electrical conductivity lower than 30 mS, will cause break with the consequent CUT-OUT of the flaker and the glowing of the YELLOW LED of water shortage, even with water in the reservoir. Opening the water supply line shutoff valve to fill up again the float reservoir, the **YELLOW LED** goes off while the **RED LED starts blinking.** After 3 minutes the unit resumes its total operation with the immediate start-up of the gear motor and, few seconds later, of the compressor.

F Check for the correct operation of the electronic eye (one per each ice chute on model SF1000N) of the optical ice level control, by closing the bottom opening of the vertical ice chute. Wait the built up of the ice into the ice chute till it cuts the light beam of the sensing "eyes". This interruption will cause an immediate blinking of the Bin Full YELLOW LED located on the front of the P.C. Board and after about 6 seconds causes the shutoff of the unit (compressor first and 3' later the gear reducer) with the simultaneous lighting (steady) of the Same LED signalling the full bin situation (Fig.5).

Discharge the ice from the ice chute so to resume the light beam previously interrupted (YELLOW LED blinking fast) and after about 6 seconds the flaker will re-start - through the 3 minutes STANDBY period - with the extinguishing of the YELLOW LED.

NOTA. The ICE LEVEL CONTROL (INFRA-RED SYSTEM) is independent of the temperature however, the reliability of its detection can be affected by external light radiations or by any sort of dirt and scale sediment which may deposit directly on the light source and on the receiver. To prevent any possible ice maker malfunction, it is advisable to locate the unit where it can't be reached by any direct light beam or light radiation and to follow the instructions for the periodical cleaning of the light sensor elements as detailed in the MAINTENANCE AND CLEANING PRO- **NOTA.** During the life of the machine the Ice Level Control may require a recalibration mainly when the glass of the two optical eyes are covered by a thin lay of scale. To do it just follow the following procedure:

• With unit OFF push and old the Button of the PC Board


• Give power to the machine through the external Master Switch

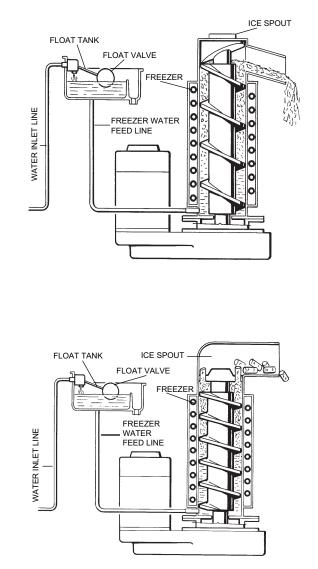
• Hold the PC Board Button till the leds are ON (more or less 10 seconds)

• Release the PC Board Button

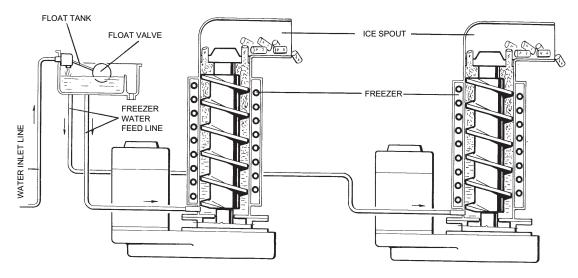
The Optical Ice Level Control is now recalibrated. Check for the correct operation of the Optical Ice Level Control by plasing a handfull of ice in between the two eyes. The Bin Full yellow led must start to blink/ flash immediately and, 6 seconds later, the machine must trip OFF.

- **G** If previously installed, remove the refrigerant service gauges and re-fit the unit service panels previously removed.
- **H** Instruct the owner/user on the general operation of the ice machine and about the cleaning and care it requires.

PRINCIPLE OF OPERATION


WATER CIRCUIT

The water enter in the machine through the water inlet fitting which incorporates a strainer - located at the rear side of the cabinet - then it goes to the water reservoir flowing through a float valve.


NOTE. The presence of thewater in the float reservoir is detected by a system of two sensors which operates in conjunction with the P.C. Board. The two sensors use the water as a conductor to maintain a low voltage current flow between them. In case the water used is very soft (de-mineralized) or the float reservoir gets empty the current flow between the sensors become so weak or is no longer maintained that, as consequence, the P.C. Board shutoff the flaker operation with the simultaneous glowing of the **YELLOW LED** signalling "Shortage of water".

The float reservoir is positioned at the side of the freezing at such an height to be able to maintain a constant water level. The water flows from the reservoir into the bottom inlet of the freezer to sorround the stainless steel auger which is vertically fitted in the center of the freezer.

In the freezer the incomingwater gets chilled into soft (slush) ice which is moved upward by the rotating action of the auger. The auger rotates counter-clockwisewithin the freezer powered by a direct drive gear motor and carries the ice upward along the refrigerated freezer innerwalls andbydoingso theice gets progressively thicker and harder.

The ice, being costantly lifted up, meet the teeth of the ice breakerwhich is fitted on the top end of the auger,where it gets compacted, cracked and forced to change from vertical into horizontal motion to be discharged out, through the ice spout and chute, into the storage bin.

By running the ice maker, i.e. by putting the unit under power, starts the automatic and continuous icemaking process which would not stop until the ice storage bin gets filled-up to the level of the control "eyes" located on the ice chute. As the ice level raises to interrupt the light beam running between the two infrared leds, the unit stops after six seconds (compressor first and 3' later the gear reducer), with the simulteneous glowing of the **YELLOW LED** signalling the **"Full Bin"** situation.

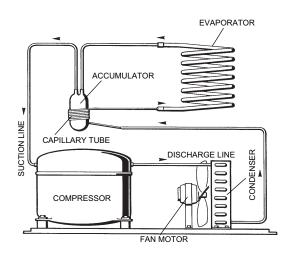
NOTE. The interruption of the light beam between the two light sensors is immediately signalled by the blinking of the **BIN FULL YELLOW LED** located on the front of the P.C. Board.

After about **6" of steady interruption** of the light beam the unit stops and the **"Full Bin" YELLOW LED** glows steady.

The six seconds of delay prevent the unit from stopping for any undue reason like the momentarily interruption of the light beam caused by the flakes that slides along the ice spout before dropping into the bin.

As some ice gets scooped out from the storage bin, the light beam between the two sensors resumes (fast blinking of YELLOW LED) and six seconds later the ice machine restarts the ice making process - going always through the 3' stand by - and the YELLOW LED goes off.

REFRIGERANT CIRCUIT


The hot gas refrigerant discharged out from the compressor reaches the condenser where, being cooled down, condenses into liquid.

Flowing into the liquid line it passes through the drier filter, then it goes all theway through the pillary tubewhere it looses some of its pressure so that its pressure and temperature are lowered.

Next, the refrigerant enters into the evaporator coil wrapped around the freezer inner tube.

The water being constantly fed at the interior of thefreezer inner tube, exchange heat with the refrigerant circulating into the evaporator coil, this cause the refrigerant to boil-off and evaporate, there by it changes from liquid into vapor. The vapor refrigerant then passes through the suction accumulator and through the suction line where the refrigerant exchanges heatwith the one flowing into the capillary tube (warmer) beforebeingsuckedinto thecompressor to be recirculated.

The refrigerant head pressure is kept between two pre-set values (8,9 bar -110,125 psig on F120 and 17,18 bar - 240,250 psig on F200, SF300, SF500 and SFN1000) by the condenser temperature sensorwhich has its probe located within the condenser fins - in air cooled versions.

This condenser temperature sensor, when senses a rising of the condenser temperature beyond thepre-fixedlimit, changesits electrical resistance and send a low voltage power flow to the **MICROPROCESSOR** of the P.C. Board which energizes,

through a **TRIAC**, the Fan Motor in ON-OFF mode.

On the water cooled versions, the refrigerant head pressure is kept at the constant value of 8.5 bar 8.5 bar (120 psig) on F200 and of 17 bar

(240 psig) on F200, SF300, SF500 and SFN1000 by themetered amount ofwater passing through the condenserwhich is regulated by the action of theWater Regulating Valve that has its capillary tube connected to the liquid refrigerant line. As pressure increases, the water regulating valve opens to increase the flow of cooling water to the condenser. **NOTE.** In case the condenser temperature probe senses that the condenser temperature has rised to 70°C on air cooled version - or 60°Conwater cooled version - for one of the following abnormal reasons:

CLOGGED CONDENSER (Air cooled version) INSUFFICIENT FLOW OF COOLING

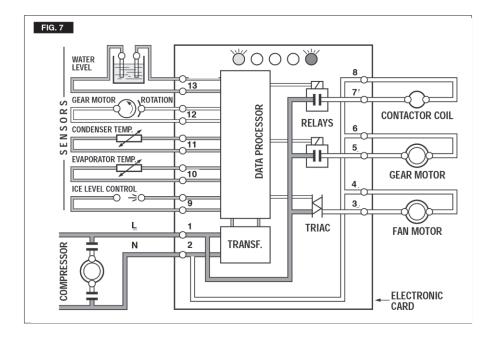
WATER (Water cooled version)

FAN MOTOR OUT OF OPERATION (Air cooled version)

AMBIENT TEMPERATURE HIGHER THEN 43°C (110°F)

it causes the total and immediateSHUT-OFF of the machine (compressor first and gear motor 3' later) in order to prevent the unit from operating in abnormal and dangerous conditions. When the ice maker stops on account of this

protective device, there is a simultaneous glowing of the **RED LED**, warning the user of the **Hi Temperature** situation.


The machine will remain in OFF mode for one hour then it will restart automatically.

In case the unit trips OFF again in alarm for 3 times in 3 hours, the machine SHUTS OFF DEFI-NITIVELY.

After having eliminated the source of the excessive condenser temperature, to restart the icemachine it is necessary to unplug and plug in again.

The **RED LED starts blinking** and three minutes later the flaker unit resume its normal operating mode. The condenser temperature sensor has a further safety function which consist in preventing the unit from operating in Lo-ambient conditions i.e. when the condenser temperature equivalent to the ambient temperature - is **lower then 1°C 34°F** (Fig.6).

As soon as the ambient temperature rises up to 5 °C the P.C. Board restarts automatically the machine on the three minutes starting time.

The refrigerant suction or Lo-pressure sets - in normal ambient conditions - on the value of 0.5 bar (7 psig) on F120 and of 2.4,2.6 bar (34,36 psig) on F200, SF300, SF500 and SFN1000 after few minutes from the unit start-up.

This value can vary of 0.1 or 0.2 bar (1.5,3 psig) in relation to the water temperture variations influencing the freezer cylinder.

NOTE. If, after tenminutes from the unit start up, no ice is made and the evaporating temperature detected by the evaporator sensor results to be higher than -1°C (30°F) the ice maker stops (compressor first and gear motor 3' later) and the **5th WARNING YELLOW LED** blinks.

The machine will remain in OFF mode for one hour then it will restart automatically. In case the unit trips OFF again in alarm for 3 times in 3 hours, themachine SHUTSOFF DEFINITIVELY.

MECHANICAL SYSTEM

The mechanical system of the Flaker machines consists basically of a gear motor assembly which drives, through a ratched coupling, a worn shaft or auger placed on its vertical axis within the freezing cylinder.

The gear motor is made of a single phase electric motor with a permanent capacitor. This motor is directly fitted in the gear case through which it drives - in counter clockwise rotation at a speed of 9.5 r.p.m. - the freezer auger being linked to it by the ratched coupling. **NOTE.** In the event the gear motor (one of the two on MF 66) will tend to rotate in the wrong direction (counterclockwise) or not rotating at all or rotating at lower speed the unit will stop immediately (compressor and gear motor) with the glowing of the WAR-NING YELLOW LED on account of the intervention of the Electromagnetic Safety Device - based on Hall Effect principle.

The machine will remain in OFF mode for one hour then it will restart automatically. In case the unit trips OFF again in alarm for 3 times in 3 hours, the machine SHUTS OFF DEFINITI-VELY. After having diagnosed and eliminated the source of the gear motor wrong rotation, to restart the unit it is necessary switch OFF and ON the power line main disconnnect switch (Fig. 7). The RED LED will start blinking and after 3 minutes the ice maker will resume its total operations by running first the gear motor and then the compressor. Too low ambient and water temperature (well below the limitations of respectively 10°C and 5°C - 50°F and 40°F) or frequent interruptions of the water supply to the freezing cylinder (clogging of thewater hose connecting the float reservoir to the water inlet at the bottom of the freezer) may cause the ice to get too hard and compact loosing fluidity and thereby seizing the auger.

This situation will put under excessive strain and load the entire drive system and freezer bearings.

REFRIGERANT METERING DEVICE:

capillary tube

REFRIGERANT CHARGE (R 134 A)

	Air cooled	Water cooled
F 80C	300 gr	300 gr
F 125C	400 gr	300 gr
F 120	440 gr	400 gr

OPERATING PRESSURES (With 21°C ambient temperature)

Discharge pressure:	8÷9 bar	8÷5 bar
Suction pressure:	0.5 bar	0.5 bar

REFRIGERANT CHARGE (R 404 A)

	Air cooled	Water cooled
F 200	660 gr	520 gr
SF 300	750 gr	600 gr
SF 500	880 gr	820 gr
SFN 1000	2400 gr	1200 gr

OPERATING PRESSURES (With 21°C ambient temperature)

Discharge pressure:	17÷18 bar	17 bar
Suction		

pressure: 2.5 bar 2.5 bar (2.4 bar for SFN 1000)

NOTA. Before charging the refrigerant system always check the type of refrigerant and quantity as specified on the individual ice machine dataplate. The refrigerant charges indicated are relatives to averages operating conditions.

COMPONENTS DESCRIPTION

A EVAPORATOR TEMPERATURE SENSOR

The evaporator sensor probe is inserted into its tube well, which is welded on the evaporator outlet line, it detects the temperature of the refrigerant on the way out from the evaporator and signals it by suppling a low voltage current flow to the P.C. Board.

According to the current received, the microprocessor let the ice maker to continue its operations or not. In case the evaporating temperature, after 10 minutes from the unit start-up, does not go below -1°C (30°F) the evaporator sensor signals to stop immediately the unit operation, with the blinking of the **5th Warning YELLOW LED.**

NOTE. The machine will remain in OFF mode for one hour then it will restart automatically. In case the unit trips OFF again in alarm for 3 times in 3 hours, the machine SHUTS OFF DEFINITIVELY.

To restart the unit after the shutoff caused by the hi evaporating temperature, it is necessary to switch OFF and ON the power line main disconnect Switch.

B WATER LEVEL SENSOR

This sensor consists of two small stainless steel rods vertically fitted on the inner face of the reservoir cover and electrically connected to the low voltage circuit of the P.C. Board. When the cover of the reservoir is positioned in its place the tips of both the rods dip into the reservoir water transmitting a low power current throu the same.

NOTE. In the event of **shortage of water** in the reservoir or, in case the water used is too soft (de-mineralized) to cause greater resistence to the current flow (electrical conductivity lower than 30 mS).

This sensor system causes the **shutoff of the machine,** to protect it from running without water or with an inadequate water quality. In this situation the **YELLOW LED** will glow to warn of the machine shutoff and the reason why.

C CONDENSER TEMPERATURE SENSOR

The condenser temperature sensor probe, located within the condenser fins (air cooled version) or in contact with the tube coil (water cooled version) detects the condenser temperature variations and signals them by supplying current, at low voltage, to the P.C. BOARD.

In case the condenser temperature sensor detects a temperature at the condenser lower than **+3°C (37°F)** that means ambient temperature too low for the correct unit operation, the sensor signals to the P.C. BOARD to do not start up the unit till the ambient temperature rises to 10°C.

In the air cooled versions, in relation to the different current transmitted, the micro processor of the P.C. BOARD supplies, through a TRIAC, the power at high voltage to the fan motor. In the event the condenser temperature rises and reaches **60°C or 70°C** according to the setting of DIP SWITCH number 8 the current arriving to the micro processor is such to cause an immediate and total stop of the machine operation.

NOTE. The machine will remain in OFF mode for one hour then it will restart automatically. In case the unit trips OFF again in alarm for 3 times in 3 hours, the machine SHUTS OFF DEFINITIVELY.

To restart the unit after the shutoff caused by the hi condenser temperature, it is necessary to switch OFF and ON the power line main disconnect Switch.

D ELECTROMAGNETIC SENSOR

This safety device is housed on top of the Drive Motor and detects - based on Hall Effect principle - the rotating speed and rotating direction of the drive Motor.

Should the rotating speed drop below 1300 r.p.m. the magnitude measured by this device is such to signal to the microprocessor to stop the unit and light-up the YELLOW LED. The same reaction occures when the drive motor will tend to rotate in the wrong direction (counterclockwise) or when it doesn't rotate at all.

NOTE. The machine will remain in OFF mode for one hour then it will restart automatically. In case the unit trips OFF again in alarm for 3 times in 3 hours, the machine SHUTS OFF DEFINITIVELY. To restart the unit after the shutoff caused by this safety device, it is necessary first to eliminate the cause that has generated the intervention of the device and then switch OFF and ON the power line main disconnect switch.

E OPTICAL ICE LEVEL CONTROL (Two on SFN 1000)

The electronic optical ice level control, located into the ice chute (one in each of the two ice chutes on SFN1000 model), has the function to stop the operation of the ice machine when the light beam between the light source and the receiver gets interrupted by the flake ice which accumulates in the chute.

When the light beam is interrupted the **Bin Full YELLOW LED** located in the front of the P.C. BOARD blinks; in case the light beam gets interrupted for as long as 6 seconds, the ice machine stops (drive motor keeps on working by 3' delay then stops) with the glowing-up of the **2nd YELLOW LED** to monitor the full ice bin situation. The 6 seconds of delay prevents that any minimum interruption of the light beam due to the regular ice chuting through the ice spout may stop the operation of the unit. **NOTE.** During the life of the machine the Ice Level Control may require a recalibration mainly when the glass of the two optical eyes are covered by a thin lay of scale.

To do it just follow the following procedure:

• With unit OFF push and old the Button of the PC Board

• Give power to the machine through the external Master Switch

 Hold the PC Board Button till the leds are ON (more or less 10 seconds)

• Release the PC Board Reset Button

The Optical Ice Level Control is now recalibrated.

Check for the correct operation of the Optical Ice Level Control by plasing a handfull of ice in between the two eyes.

The Bin Full yellow led must start to blink/flash immediately and, 6 seconds later, the machine must trip OFF.

As soon as the ice is scooped out (with the resumption of the light beam between the two infrared sensor of ice level control) 6 seconds later the ice machine resumes its operation with the simul-taneous extinguishing the 2nd YEL-LOW LED.

F P.C. BOARD (Data processor)

The P.C. BOARD, fitted in its plastic box located in the front of the unit, consists of two separated printed circuits one at high and the other at low voltage and protected by fuses. Also it consists of five aligned LEDS monitoring the operation of the machine of three jumpers (TEST used only in the factory, 60/70°C used to set up the PC Board at proper safety cut out condensing temperature and 3' to by pass the 3 minutes Stand By) and of input terminals for the leads of the sensor probes as well as input and output terminals for the leads of the ice maker electrical wires. The P.C. BOARD is the brain of the system and it elaborates, through its micro processor, the signals received from the sensors in order to control the operation of the different electrical components of the ice maker (compressor, gear motor, etc.). The five LEDS, placed in a row in the front of the P.C. BOARD, monitor the following situations:

GREEN LED

Unit under electrical power

YELLOW LED

Blinking: I/R beam cut out Steady: unit shut-off at storage bin full Blinking fast: I/R beam resumed

YELLOW LED

Unit shut-off due to a too lo-water level into float tank

RED LED

ON ALL THE TIME - Unit shut-off due to a too hi-condensing temperature - Unit shut-off due to a too lo-ambient temperature <+1°C BLINKING

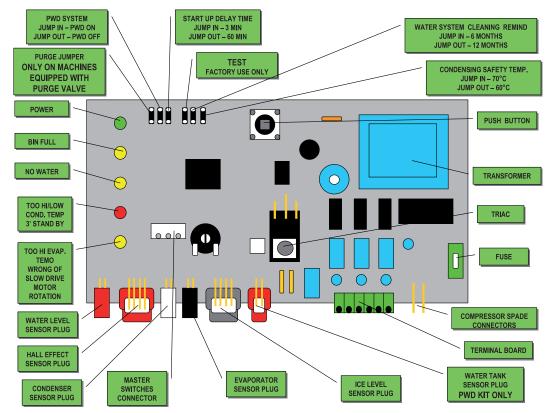
3 minutes start up delay time

YELLOW LED

ON ALL THE TIME - Unit shut-off due to the wrong rotation direction of gear motor - Unit shut-off due to the too lo speed of gear motor BLINKING

- Unit shut-off due to a

too hi-evaporating temp.


>-1°C after 10 min of operation

TO BY-PASS THE 3'/60' STAND BY TIME, SYMPLY JUMP "TEST" CONTACTS WITH PCB ENERGIZED

YELLOW AND RED LED

- Blinking: Evaporator sensor out of order

- Steady: Condenser sensor out of order

- Blinking alternatively: Ice level control out of order

YELLOW LED "NO WATER" AND YELLOW LED "WRONG ROTATION"

- CONTEMPORARY BLINKING: Cleaning and washing reminder (every 6 or 12 months of operation according to the jumper setting)

ALL LED ON:

- STEADY: machine stopped for TEST connector closed

G JUMPERS

The Flaker PC Board is equipped by six jumpers:

J1 = PURGE Used on machine equipped with Water Purge Valve to purge out the water from the water system every 12 hours and when the machine restart from the Bin Full

JUMP IN - Purge OFF

JUMP OUT - Purge ON

J2 = PWD Used to Pump Out the water by means of the Progressive Water Pump supplied as a kit

JUMP IN - No Progressive Water Pump installed/in operation - MF Models JUMP OUT - Progressive Water Pump installed/in operation

J3 = 3'/ 60' Delay time at start up

JUMP IN - 3 minutes delay

JUMP OUT - 60 minutes delay

J4 = TEST Factory use ONLY

J5 = 6/12 MESI Cleaning remind for the water system - Red Light blinks/flashes with machine ON

JUMP IN - 6 months set up JUMP OUT - 12 months set up

NOTE. To restart the cleaning remind countdown push and hold the PC Board button for more of 5 seconds with machine in operation till the switching OFF of the two YELLOW Leds. J6 = 60/70 °C Set up of the Safety Condensing Temperature Sensor JUMP IN - 70°C JUMP OUT - 60°C

H. INTERFACE P.C. BOARD (Only on SFN1000)

Used only on SFN1000 model, it allows to elaborate the signal received from both the electromagnetic sensors as well as from both the optical ice level controls transmitting it to the P.C. Board for the control of the unit operation. The Interface P.C. Board is equipped by four INLET sockets (two for the electromagnetic sensors and two for the optical ice level controls) and two OUTLET plugs to be connected to the sockets of the main P.C. Board.

I FLOAT RESERVOIR

The float reservoir consist of a plastic water pan on which is fitted a float valve with its setting screw. The float valve modulate the incoming water flow to maintain a constant water level in the reservoir, level that corresponds to the one in the freezing cylinder to ensure proper ice formation and fluidity.

On the inner side of the reservoir cover are fitted the two water level sensor pins which detects the presence or the shortage of water in the reservoir.

NOTE. It is very important to make sure of the correct fitting of the cover on the reservoir in order to enable the sensor to efficiently control the water situation avoiding undue shutoff interventions.

J FREEZING CYLINDER or EVAPORATOR (Two on SFN 1000)

The freezing cylinder is made of a stainless steel vertical tube on which exterior is wrapped around the cooling coil with the evaporating chamber and in its interior is located the auger which rotates on its vertical axis and it is maintained aligned by the top and bottom bearings. A water seal system is located in the bottom part of the freezer while at the top end is fitted the ice breaker.

The water constantly flowing into the cylinder bottom part, freezes into ice when in contact with the cylinder inner walls. The ice is then lifted up by the rotating auger and compacted and forced out by the ice breaker.

K ICE BREAKER (Two on SFN 1000)

The ice breaker is fitted in the freezer upper part it has two breaker teeth to break the ice and with its slanted shape from the rear tooth to the front one it compacts and forces the ice out in an horizontal way.

On the other models the ice breaker is made by several rectangular openings where the ice is forced to pass through.

By undergoing this, the ice looses its excess of water content so it drops into the bin in hard dry bits of ice.

In the ice breaker it is housed the top bearing which is made of two rolls bearings positioned to withstand the auger axial and radial loads. This bearing is lubricated with a food grade - water resistant grease.

NOTE. It is advisable to check the conditions of both the lubricant grease and the top bearing every six months.

L GEAR MOTOR (Two on SFN 1000)

The gear motor is made of a single phase electric motor with permanent capacitor directly fitted on a gear box.

The drive motor rotor is kept aligned on its vertical axis by two ball bearings permanently lubricated. The gear case contains a train of three spur gears with the first one in fiber to limit the noise level. All the three gears are encased in case roller bearings and are covered by lubricant grease

(MOBILPLEX IP 44).

Two seal rings, one fitted on the rotor shaft and the other on the output shaft keep the gear case sealed.

The interior can be inspected and serviced by unbolting the two halves of the aluminium gear case housing.

M FAN MOTOR (Air cooled version)

The fan motor is controlled through the TRIAC of the P.C. BOARD by the condenser temperature sensor. Normally it operates to draw cooling air through the condenser fins.

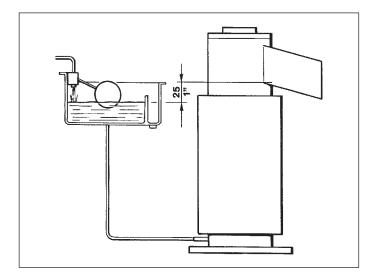
In cold ambient situation, the fan motor can run at intermittance as the condenser pressure must be kept between two corresponding head pressure values.

N WATER REGULATING VALVE (Water cooled version)

This valve controls the head pressure in the refrigerant system by regulating the flow of water going to the condenser.

As pressure increases, the water regulating valve opens to increase the flow of cooling water.

O COMPRESSOR

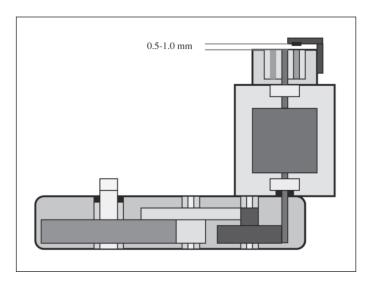

The hermetic compressor is the heart of the refrigerant system and it is used to circulate and retrieve the refrigerant throughout the entire system. It compresses the low pressure refrigerant vapor causing its temperature to rise and become high pressure hot vapor which is then released through the discharge valve.

ADJUSTMENT, REMOVAL AND REPLACEMENT PROCEDURES

NOTE. Read the instructions throughly before performing any of the following adjustment or removal and replacement procedure

A ADJUSTEMENT OF THE EVAPORATOR WATER LEVEL

- The correct water level in the freezing cylinder is about 20 mm. (1") below the ice discharge opening. Low water level causes excessive strain inside the freezer assembly due to a faster freezing rate.
- When the water level is above or below the correct one, adjustment can be performed by raising or lowering at the measure required, the water reservoir and its mounting bracket.



1 To Raise or Lower the water level:

a Loosen and remove the screw securing the mounting bracket of the water reservoir to the unit cabinet and raise the water reservoir to the correct level. b Thread the mounting screw in the corresponding hole and tighten it. WARNING. Be sure the electrical power supply circuit breaker and the inlet water supply are OFF, before starting any of the following Removal and Replacement procedures as a precaution to prevent possible personal injury or damage to the equipments.

B. REPLACEMENT OF THE GEAR MOTOR MAGNETIC SENSOR

- 1 On F100-200, SF300-500 remove the front/top and side/rear panels and on SFN1000 remove the front, top and left side panels.
- 2 Unloose the three screws securing the plastic cover to the top of the gear motor and remove it.
- 3 Unloose the two screws securing the magnetic sensor to the plastic housing and withdraw it from its seat.
- 4 Trace the gear motor magnetic sensor terminal plug on the rear side of the control box (red with four terminal pins) and draw it out from its socket by carefully slackening the fastening tie.
- 5 To install the replacement gear motor magnetic sensor follow the above steps in reverse.

C REPLACEMENT OF THE AUGER, WATER SEAL, BEARINGS AND COUPLING

- 1 Remove thepanels.
- 2 Follow the steps at item H to remove the ice spout.
- 3 On model F120-F200 unloose and remove two screws and washers holding tight the spout bracket to the freezing cylinder. On models SF300-SF500 and SFN1000 unloose and remove the four bolts securing

the icebreaker to the upper flange of the evaporator.

4 On model F120-F200 grasp the wire cap hook at the top of the freezer and pull out the auger, attached cap and ice breaker from the top of the freezer.

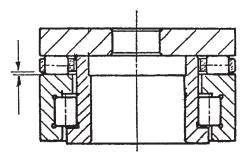
On models SF300-SF500 and SFN1000 with two flat screwdrivers insert then on the space between the icebreaker and the upper flange and by tilting them lift the icebreaker and auger assembly.

Grasp the icebreaker and remove the icebreaker and auger assembly by lifting them from the evaporator.

NOTE. If the auger cannot be pulled out, proceed to steps 10 and 11 of this paragraph, to gain access to the auger bottom. Then, with a rowhide mallet or placing a piece of wood on the bottomend of the auger, tap this bottom to break loose the auger and be able then to pull it out as per step 4 above.

- 5 On model F120-F200, with a circlip plier, remove the retaining ring and cap hook from the ice breaker while,on the superflaker models, remove the plastic cap using a screwdriver as a lever.
- 6 Unloose and remove cap screw and remove the ice breaker from the auger.
- 7 Clean away the old grease from the interior of the ice breaker and inspect the bearing pressed into the top of the ice breaker and if worn do not hesitate to replace it.
- 8 Inspect the conditions of the Oring; if torn or worn replace it.

WARNING. The top bearing assembly works in critical conditions for what concern its lubrication as it is haused in the ice breaker where the formation of condensation is usual. Therefore it is important to apply on it an ample coating of Food grade Waterproof Grease before installing the breaker and cap hook in place.


9 Slide off from the auger bottom the upper half of the water seal.

NOTE. Any time the auger is removed for replacement or inspection use extra care in handling the water seal parts, so no dirt or foreign matters are deposited on the surfaces of the seal. If there is any doubt about the effectiveness of the water seal or O ring do not hesitate to REPLACE THEM.

- 10 Unloose and remove the three/four bolts which attach the freezer assy to the aluminium adaptor.
- 11 Raise the freezer assy off the adaptor, secure it out of the way to allow room to work.On F120-F200 using a suitable lenght and size wooden dowel or stick inserted through the top of the open freezer, tap the lower half of the water seal and the lower bearing out the bottom of the freezer.
- 12 On the superflaker models, with two screwdrivers as a lever, remove from the bottom of the freezer assy the lo bearing brass holding ring.

NOTE. It is good practice to replace the water seal assy and both the top and the bottom bearings any time the auger is removed. To facilitate this it is available a service Kit which includes besides the above mentioned parts, the ice breaker O ring and a tube of food grade waterproof grease.

- 13 Reach through the adaptor and remove the coupling parts.
- 14 Check both the coupling halves for chipping and wear and do not hesitate to replace them.
- 15 Install the bottom bearing into its brass housing paying attention to have thewhite plastic ring facing up.
- 16 Install the upper bearing into the ice breaker starting by the radial portion that must be fitted with the flat surface facing up.
- 17 Apply some lubricant (grease) on the upper surface then install the rollers cage with the smaller openings of the same facing up so to leave a small gap between plastic cage and flat surface of the botton portion of the bearing (see drawing).

- 18 Apply some move lubricant then place the S.S. trust washer.
- 19 After to have replace the O ring into the ice breaker fit the same on top of the auger and secure it with the top bolt.
- 20 Install the auger/icebreaker into the evaporator followingthepreviousstepsinreverse.

D REPLACEMENT OF THE GEAR MOTOR ASSY

- 1 On F120-F200,SF300 and SF500 remove the front/top and side/rear panels and on SFN1000 remove the front, rear, top and left side panels.
- 2 Remove the three/four bolts and washers securing the gear reducer base to the unitchassis, then remove bolts and lock washerswhich attach the bottom of the aluminium adaptor to the gear reducer case cover.
- 3 Follow the steps of item E to remove the gear motor magnetic sensor.
- 4 Trace and disconnect the electric wires

leads of the drive motor. Lift and remove the entire gear motor assembly.

5 To install the replacement gear motor assy follow the above steps in reverse.

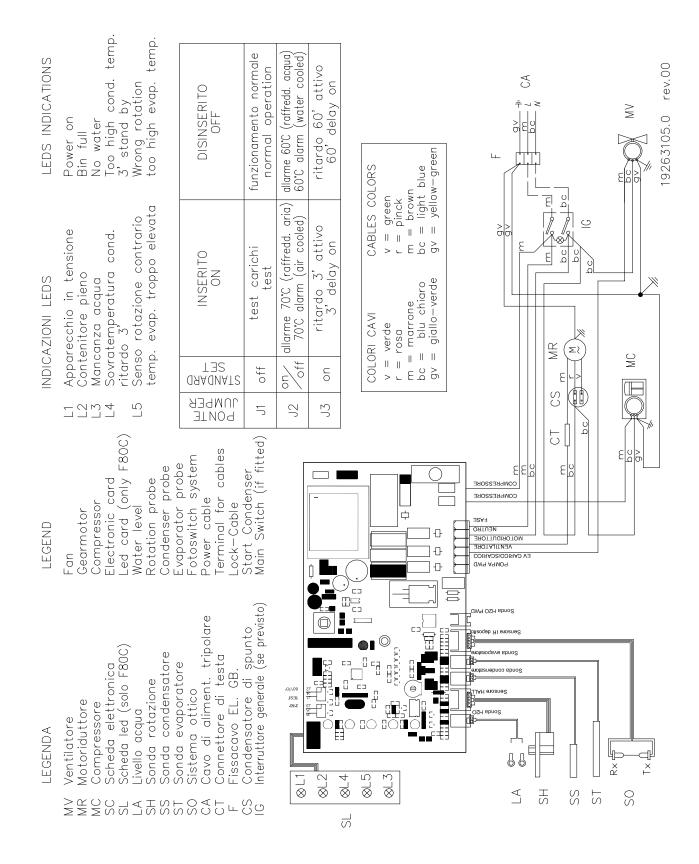
E REPLACEMENT OF THE FREEZING CYLINDER

- 1 Follow the steps at item H to remove the ice spout.
- 2 Remove the clamp fastening the water hose to the water inlet port of the freezer assy. Place a water pan under this water inlet port then disconnect the water hose and collect all water flowing from freezer and from water hose.
- 3 With draw the evaporator sensor probe from the its holder as stated in item B.
- 4 Recover the refrigerant from the system and transfer it in a container so to reclaim or recycle it.
- 5 Unsolder and disconnect the capillary tube and the accumulator/suction line assy from the outlet line of the freezing cylinder.
- 6 Remove the three/four bolts and washers securing the gear reducer base to the unit chassis, then remove bolts and lockwashers which attach the bottom of the aluminium adaptor to the gear reducer case cover.
- 7 Lift the freezer up and off the gear motor assembly, then if necessary remove the aluminium adaptor by removing the three mounting screws and lockwashers.

NOTE. It is imperative to installa replacement drier whenever the sealed refrigeration system is open.

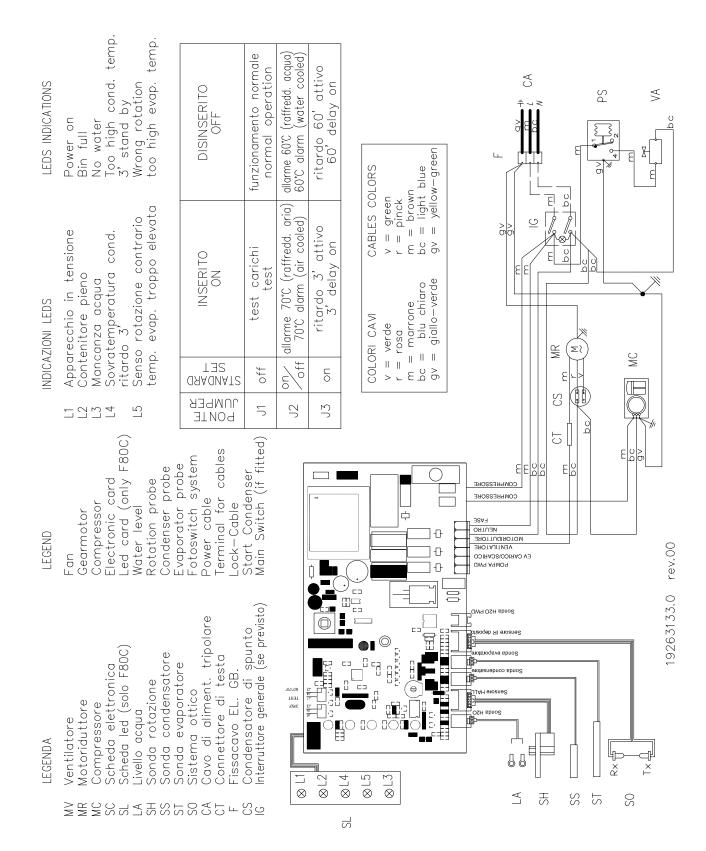
Do not replace the drier until all other repairs or replacements have been completed.

8 To install the replacement evaporator follow the above steps in reverse.

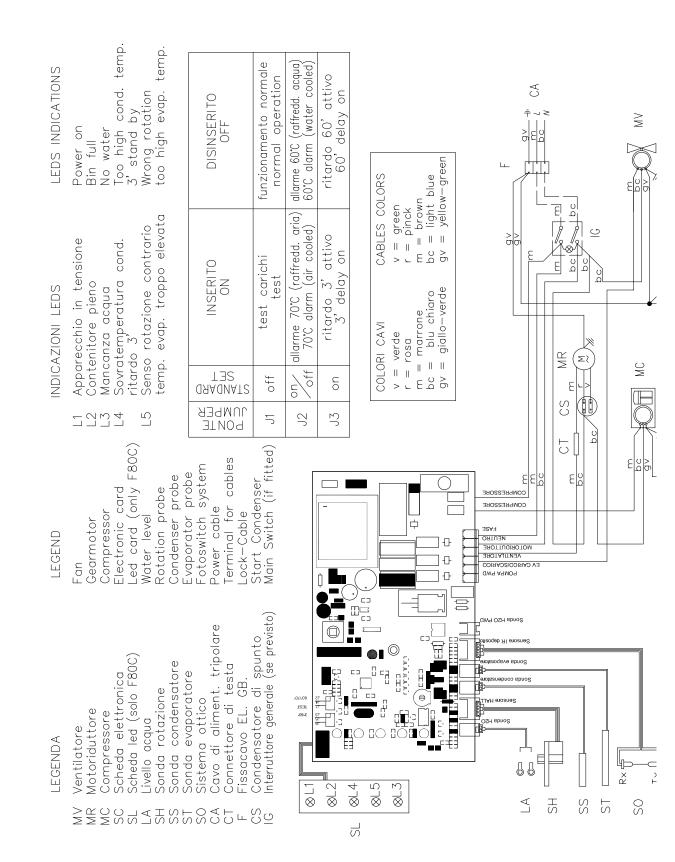

NOTE. Thoroughly evacuate the system to remove moisture and non condensables after evaporator replacement.

FLAKERS	
OF ICE	
()	
ACTERISTIC	
. CHARA	
TECHNICAL	

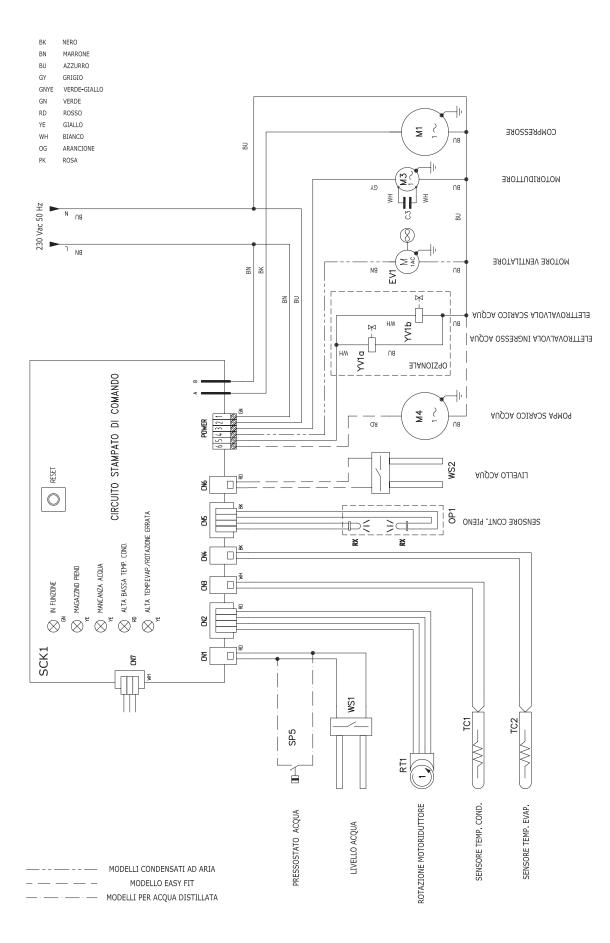
>	R134a R134a R134a		CALILLAN	POWER	AMPS	START AMPS	AMPS MOTOREDUCTOR	CONS.
	R134a	300/300 gr.	3000 mm. D int. 0.90 D: 2.2 mm	400 W	2.6 A	11 A	0.200 A	9.6 KWH/24 HR
		400/300 gr.	2500 mm. D int. 1.00 D: 2.2 mm	480 W	3.2 A	18 A	0.200 A	11.5 KWH/24 HR
	R134a	440/400 gr.	2600 mm. D int. 1.00 D: 2.2 mm	350 W	2.1 A	9.1 A	0.300 A	8.5 KWH/24 HR
F200 A/W 230/50/1	R404a	660/520 gr.	2600 mm. D: 1.25 mm D: 2.5 mm	760 W	3.4 A	15.8 A	0.400 A	16 KWH/24 HR
SF300 A/W 230/50/1	R404a	750/600 gr.	2000 mm. D: 1.5 mm D: 2.7 mm	1080 W	5.9 A	28 A	0.800 A	26 KWH/24 HR
SF500 A/W 380/50/1	R404a	880/820 gr.	3000 mm. D: 2 mm D: 3.2 mm	1800 W	4.2 A	23 A	1 A	40 KWH/24 HR
SF500 A/W 380/50/1	R404a	880/820 gr.	3000 mm. D: 2 mm D: 3.2 mm	1800 W	9.5 A	50 A	1 A	43 KWH/24 HR
SFN1000 A/W 380/50/1	R404a	2400/1200 gr.	2 x 3000 mm. D: 2 mm D: 3.2 mm	3600 W	6.5 A	55 A	1 A	60 KWH/24 HR


WIRING DIAGRAM F 80C

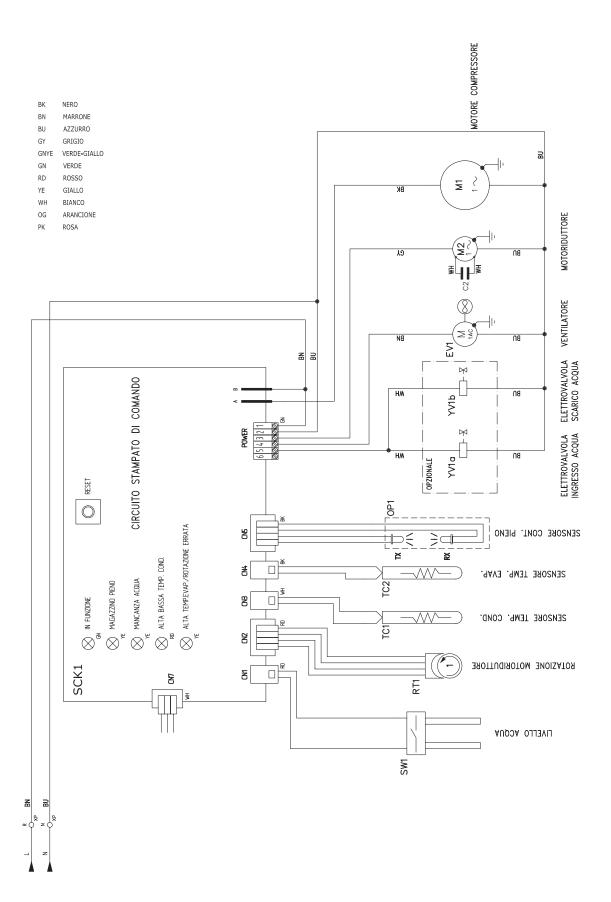
Air cooled 220-240/50/1


WIRING DIAGRAM F 80C

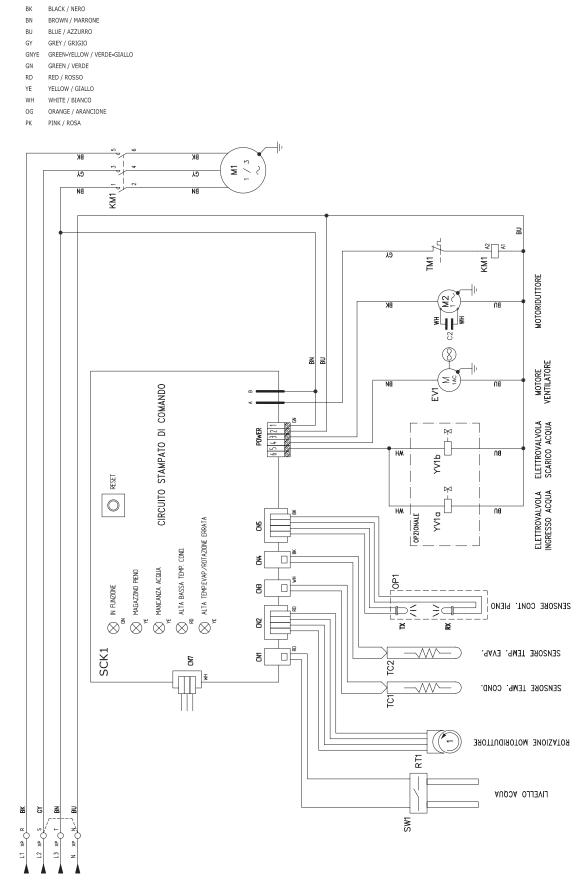
Water cooled 220-240/50/1


WIRING DIAGRAM F 125C

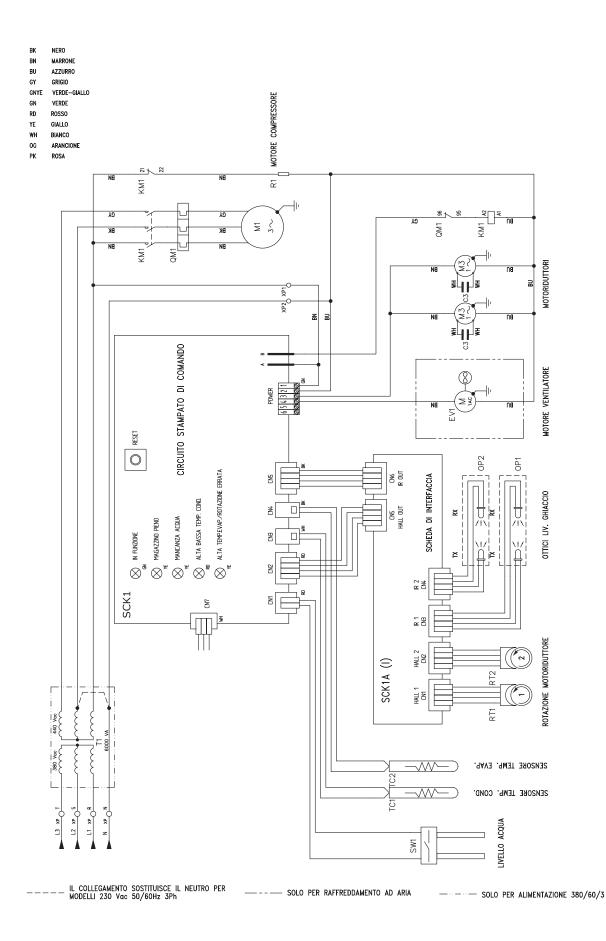
<u>Air / water cooled</u> 220-240/50/1



Air / water cooled 220-240/50/1


Air / water cooled 220-240/50/1

WIRING DIAGRAM SF 500


<u>Air / water cooled</u> 400/50/3

----- PER COLLEGAMENTO 230 Vac CON NEUTRO

WIRING DIAGRAM SFN 1000

Air / water cooled 400/50/3

41

SERVICE DIAGNOSIS

SYMPTON	POSSIBLE CAUSE	SUGGESTED CORRECTION
No LED lighted-on	Blown fuse in P.C.Board	Replace fuse & check for cause of blown fuse
	Master switch in OFF position	Turn switch to ON position
	Inoperative P.C.Board	Replace P.C.Board
	Loose electrical connections Inoperative or dirty ice level control	Check wiring Replace or clean ice level control
with no ice in the bin	inoperative of diffy ice level control	heplace of clean ice level control
	Shortage of water	See remedies for shortage of water.
	Water too soft	Install a mineral salt metering device
Red-alarm LED glows	High head pressure	Dirty condenser. Clean
		INOPERATIVE fan motor. Replace
	Ambient temperature too low	Move unit in warmer location
	3' stand by	None - Wait the elapsed of 3'
	Too hi evap. temperature	Check and charge refrigerant
	Shortage or lack of refrigerant Inoperative evaporator sensor	system Replace
	Gear motor turns on reverse	Check stator winding and capacitor
	Too low gear motor rotating speed	Check rotor bearings, freezer bearings
		and interior of freezer for scores.
		Replace whatever worn or damaged.
	Drive motor doesn't turn	Check for power, open circuit, etc.
1	Magnetic cylinder loose its magnetic	Replace magnetic cylinder.
	charge	
Water yellow LED and red LED ON (steady) together	Inoperative Condenser Sensor	Replace it.
0	Inoperative Evaporator Sensor	Replace it.
red LED blink together		
	Low voltage	Check circuit for overloading
mittently		Check voltage at the supply to the
		building. If low, contact the power
	Non condensable gas in system	company
	Non-condensable gas in system Compressor starting device with	Purge the system Check for loose wires in starting
	loose wires	device
Low ice production	Capillary tube partially restricted	Blow charge, add new gas & drier,
		after evacuating system with
	Moisture in the system	vacuum pump Same as above
	Low water level in the freezer	Adjust to approx 20 mm below ice
		spout
	Shortage of refrigerant	Check for leaks & recharge
	Pitted or stained auger surface	Clean or replace auger

SYMPTOM	POSSIBLE CAUSE	SUGGESTED CORRECTION
Wet ice	Ambient temperature too high Under or overcharge of refrigerant High water level in the freezer Faulty compressor Worn out of the auger	Move unit to cooler location Recharge with correct quantity Lower to approx. 20 mm below ice spout Replace Replace
Machine runs but makes no ice	Water not entering in the freezer Drive motor or gear stripped Moisture in the system	Air look in feed line to freezer. Vent it Clogged feed line to freezer. Clean it Check repair or replace Purge, replace drier and re-charge
Water leaks	Water seal leaking Water feed line to freezer leaking Float valve not closing Spout leaking	Replace water seal Check and fasten hose clamp Check and adjust float valve setting screw Tighten screws holding the spout
Excessive noise or chatte- ring	Mineral or scale deposit on auger and inner freezer walls Low suction pressure Water feed line to freezer clogged Low water level into freezer Worn freezer bearings	Remove and manually polish auger and inner walls of freezer barrel using emery paper Add refrigerant to rise suction pressure Vent and clean it Adjust to approx. 20 mm below ice spout Check and replace
Gear motor noise	Worn rotor bearings Shortage or poor lubricant in gear case Gear case bearings and racers worn out	Check and replace Check for proper lubr. opening gear case. Top of gears must be covered with lubr. Check and replace worn parts
Shortage of water	Strainer at water inlet fitting clogged	Remove strainer and clean
	Float reservoir water nozzle clogged-up	Remove float valve and clean nozzle

MAINTENANCE AND CLEANING INSTRUCTIONS

A GENERAL

The periods and the procedures for maintenance and cleaning are given as guides and are not to be construed as absolute or invariable. Cleaning, especially, will vary depending upon local water and ambient conditions and the ice volume produced; and, each icemaker must be maintened individually, in accordance with its particular location requirements.

B ICEMAKER

The followingmaintenance should be scheduled at least two times per year on these icemakers.

- 1 Check and clean the water line strainer.
- 2 Remove the cover from the float reservoir care to do not damage the two water sensors - and depress the float to make sure that a full stream of water enters into the reservoir. If not gently remove the float valve from its reservoir bracket than clean the hole of the nozzle.
- 3 Check that the icemaker is levelled in side to side and in front to rear directions.
- 4 Check that the water level in the water reservoir is below the overflow but high enough that it does not run out of the spout opening.
- 5 Clean the water system, water reservoir and the interior of freezing cylinder using a solution of cleaner.

Refer to procedure C cleaning instructions and after cleaning will indicate frequency and procedure to be followed in local areas.

NOTE. Cleaning requirements vary according to the local water conditions and individual user operation.

- 6 If required, polish the two sensor rods secured to the float reservoir cover, heavy scale sediment on them can be removed with the help of a bit of cleaner.
- 7 With the ice machine and fan motor OFF on air cooled models, clean condenser using vacuum cleaner, whisk broom or non metallic brush taking care to do not damage the condenser/ambient temperature sensor.
- 8 Check for water leaks and tighten drain line connections.Pourwater down bin drain line to be sure that drain line is open and clear.
- 9 Check the ice level control sensor to test shut-off. Close the bottom of the ice chute and wait till it is completely full of ice so to cut off the light beam for at least 6 seconds. This should cause the immediate blinking of the Bin Full YELLOW LED located in the front of P.C. Board and, 6 seconds later, the total stopping of the ice maker with the simultaneous light up of the same LED (steady). Within few seconds from the removal of the ice between the sensor lights the ice maker resume its operation.

NOTE: The ice level control uses devices that sense light, therefore they must be kept clean enough so they can "see". Everythreemonthsremovetheopticalsystem then clean/wipe the sensing "eyes" with a clean soft cloth.

- 10Check for refrigerant leaks and for proper frost line, which should frost as far as approx.20 cm (8") from the compressor.
- 11When doubtful about refrigerant charge, install refrigerant gauges on corresponding service valvesandcheckforcorrect refrigerantpressures.
- 12Check that fan blades move freely and are not touching any surfaces.

13Remove the retaining ring and the hook and cap from the top of the freezer assembly then inspect the top bearing, wipe clean of all grease and apply a coating of food grade water proof grease.

NOTE. It is recommended to use only food grade and waterproof grease to lubricate the freezer top bearing.

14Check the quality of ice.

NOTE. It is not abnormal for some water to emerge from the ice spout with the flaker ice.

Ice flakes should be wet when formed, but will cure rapidily to normal hardness in the bin.

C. CLEANING INSTRUCTIONS OF WATER SYSTEM

- 1 Switch OFF the Master disconnect switch on the power line.
- 2 Remove all ice stored in the bin to prevent it from getting contaminated with the cleaning solution.
- 3. Shut close the water shutoff valve on water line.
- 4 Remove the top panels to gain access to the water reservoir.
- 5. Remove the float reservoir cover andwith a piece of copper wire short the two metal pins of the water level sensor.

NOTE. Put one or both of the water sensor on the casing of the equipment, because in this way through the condenser sensor voltage will be transferred and the equipment will be switched off through that due to high temperature.

- 6 Place a water pan under the freezer water inlet port, disconnect the water hose from this port and allow the water from the freezer to flow into the pan. Then refit the water hose to the freezer water inlet port.
- 7 Prepare the cleaning solution in a plastic container.

WARNING. The Ice Machine Cleaner contains Phosphoric and Hydroxyacetic acids. These compounds are corrosive and may cause burns if swallowed, DO NOT induce vomiting. Give large amounts of water or milk. Call Physician immediately. In case of external contact flush with water.

KEEP OUT OFTHE REACH OF CHILDREN

- 8 Pour the cleaning solution into the water reservoir.
- 9 Wait till the machine starts to discharge ice, then continue to slowly pour the cleaning solution into the water reservoir taking care to maintain the level just below the overflow.

NOTE. The ice produced with the decalcification solution is yellowish and smooth. In this phase, there are loud noises from the freezer due to the rubbing between the rising ice and the evaporator walls. In this case, it is recommended that the equipment should be switched off for some minutes, so that the decalcification solution in the freezer can be released.

- 10When all the cleaning solution has been used up, open the water shutoff valve to allow new fresh water to flow into the reservoir. Let the unit to continue to run until the ice resumes the normal colour and hardness.
- 11Stop the icemaker and pour warmwater on the ice deposited into the storage bin tomelt it up.

ATTENTION use ice produced with the cleaner solution. Be sure none remains in the bin.

12Left the unit running for approx 10 minutes then remove the copper wire used to jump the two sensors for the water level and place back correctly the cover on the float reservoir.

REMEMBER. To prevent the accumulation of undesirable bacteria it is necessary to sanitise the interior of the storage bin with an antialgae disinfectant solution every week.

Via del Lavoro, 9 C.P. 172 I - 31033 Castelfranco Veneto (TV) Italy Tel. +39 0423 738455 - Fax +39 0423 722811 E-mail: service@castelmac.it Web-site: www.castelmac.it

Cod. 71503496/0- Rev. 002 - 05/2015